WECBA —  Fundamental R&D III   (28-Jun-23   09:40—10:00)
Paper Title Page
WECBA01
Successful SIS Multilayer Activities on Cavities and Samples Using ALD  
 
  • I. González Díaz-Palacio, R.H. Blick, C. Saribal, R. Zierold
    University of Hamburg, Hamburg, Germany
  • G.K. Deyu, W. Hillert, M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Theoretically SIS multilayers predict to delay vortex penetration allowing for operation gradients more than the double of bulk Nb cavities and Q-values two orders of magnitude above. The University of Hamburg focuses on Atomic Layer Deposition (ALD) as most promising coating technique. In a proof-of principle experiment thermal ALD of Al₂O₃ was successfully applied to two 1.3GHz single-cell cavities achieving gradients above 40MV/m without any deterioration in Q-value [1]. Studies using plasma-enhanced ALD (PEALD) on planar samples focus on AlN and NbTiN as dielectric and superconductor material, respectively. The deposition process and post-deposition treatments have been optimized by studying the superconducting properties in magneto-transport and in vibrating sample magnetometry of the films. Different compositions, thicknesses, and thermal annealing treatments have been investigated with respect to their resistance, magnetization, flux trapping efficiency, thermal conductance, elemental composition, and crystallinity. Within this presentation, the aggregated results of all those measurements will be presented and discussed in detail.
[1] Marc Wenskat et al 2023 Supercond. Sci. Technol. 36 015010
 
slides icon Slides WECBA01 [4.209 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)