Author: Adolphsen, C.
Paper Title Page
MOPMB067 Design of a Cathode Insertion and Transfer System for LCLS-II-HE SRF Gun 267
 
  • R. Xiang, A. Arnold, S. Gatzmaga, A. Hoffmann, P. Murcek, R. Steinbrück, J. Teichert
    HZDR, Dresden, Germany
  • C. Adolphsen, J. Smedley
    SLAC, Menlo Park, California, USA
  • W. Hartung, S.H. Kim, T.K. Konomi, S.J. Miller, L. Popielarski, K. Saito, T. Xu
    FRIB, East Lansing, Michigan, USA
  • M.P. Kelly, T.B. Petersen
    ANL, Lemont, Illinois, USA
  • J.W. Lewellen
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by cooperation project between MSU and HZDR RC113062 from the U.S. Department of Energy Office of Science under Cooperative Agreement DE-AC02-76SF00515.
Superconducting radio frequency photo injectors (SRF gun) offer advantages for operating in continuous wave (CW) mode and generating high-brightness and high-current beams. A new SRF gun is designed as a low emittance photo injector for LCLS-II-HE and a prototype gun is currently being developed under collaboration between SLAC, FRIB, HZDR and ANL. The aim is to demonstrate stable CW operation at a cathode gradient of 30 MV/m. One of the crucial component for successful SRF gun operation is the photocathode system. The new SRF gun will adopt the HZDR-type cathode, which includes a cathode holder fixture (cathode stalk) developed by FRIB and a sophisticated cathode exchange system designed by HZDR. This innovative cathode insertion system ensures accurate, particle-free and warm cathode exchanges. A novel alignment process targets the cathode to the stalk axis without touching cathode plug itself. To commission the prototype gun, metallic cathodes will be used. A specifically designed vacuum system ensures vacuum pressure of 10-9 mbar for transport of a single cathode from the cleanroom to the gun. Thus maintaining cathode quality.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB067  
About • Received ※ 18 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 18 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB069 Design and Tests of a Cathode Stalk for the LCLS-II-HE Low Emittance Injector SRF Gun 589
 
  • T.K. Konomi, W. Hartung, S.H. Kim, S.J. Miller, D.G. Morris, K. Saito, A.T. Taylor, T. Xu, Z.Y. Yin
    FRIB, East Lansing, Michigan, USA
  • C. Adolphsen, J. Smedley, L. Xiao
    SLAC, Menlo Park, California, USA
  • S. Gatzmaga, P. Murcek, R. Xiang
    HZDR, Dresden, Germany
  • M.P. Kelly, T.B. Petersen
    ANL, Lemont, Illinois, USA
  • J.W. Lewellen
    LANL, Los Alamos, New Mexico, USA
 
  A SRF gun can operate CW with a high gradient and ultra-low vacuum for high-quantum efficiency, low MTE photocathodes, useful features for delivery of high-brightness, high-repetition-rate beams. For these reasons, an SRF gun based photoinjector was chosen for a proposed Low Emittance Injector addition to the LCLS-II-HE facility, which will operate CW with bunch rates up to 1 MHz. For this injector, a prototype 185.7 MHz QWR gun is being developed in a collaborative effort among FRIB, HZDR, ANL and SLAC, with the goal of achieving a photocathode gradient of at least 30 MV/m. The photocathode is held by a coaxial fixture (cathode stalk) for thermal isolation from the cavity body. The system must allow for precise alignment of the photocathode, particle-free photocathode exchange, cryogenic (55-70 K) or warm (273-300 K) photocathode operating temperatures, and DC biasing to inhibit multipacting. A prototype cathode stalk has been built and bench tests are underway to validate the design. Measurements include RF power dissipation, DC bias hold-off, multipacting suppression and heat transfer effectiveness. This paper describes the cathode stalk design and the test results.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB069  
About • Received ※ 03 July 2023 — Revised ※ 27 July 2023 — Accepted ※ 19 August 2023 — Issue date ※ 20 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRIBA07 Status of the SLAC/MSU SRF Gun Development Project 1003
 
  • S.J. Miller, Y. Al-Mahmoud, W. Chang, Y. Choi, C. Compton, X.J. Du, K. Elliott, W. Hartung, J.D. Hulbert, S.H. Kim, T. Konomi, D.G. Morris, M.S. Patil, L. Popielarski, K. Saito, A. Taylor, B.P. Tousignant, J. Wei, J.D. Wenstrom, K. Witgen, T. Xu
    FRIB, East Lansing, Michigan, USA
  • C. Adolphsen, R. Coy, F. Ji, M.J. Murphy, J. Smedley, L. Xiao
    SLAC, Menlo Park, California, USA
  • A. Arnold, S. Gatzmaga, P. Murcek, J. Teichert, R. Xiang
    HZDR, Dresden, Germany
  • M.P. Kelly, T.B. Petersen, P. Piot
    ANL, Lemont, Illinois, USA
  • J.W. Lewellen
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the Department of Energy under Contract DE-AC02-76SF00515
The Linac Coherent Light Source II High Energy (LCLS-II-HE) Project at SLAC includes the construction of a low-emittance injector (LEI) and a superconducting quarter-wave resonator (QWR) at 185.7 MHz. Several alternatives to a superconducting radio frequency (SRF) QWR gun were considered for the LEI, including nor-mal-conducting RF guns evolved from the LCLS-II gun design. Compared to normal-conducting designs, the combination of an intrinsically outstanding vacuum environment (for cathode lifetime), and the potential for a larger ultimate performance envelope, led to the deci-sion to pursue development of the QWR-SRF gun. A prototype gun is currently being designed and fabricated at the Facility for Rare Isotope Beams (FRIB) at Michi-gan State University (MSU). This paper presents perfor-mance goals for the new gun design, an overview of the prototype development effort, status, and future plans including fabrication.
 
slides icon Slides FRIBA07 [9.655 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-FRIBA07  
About • Received ※ 15 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 11 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)