Author: Belomestnykh, S.A.
Paper Title Page
TUPTB044 Compact Multicell Superconducting Crab Cavity for ILC 521
 
  • A. Lunin, S.A. Belomestnykh, I.V. Gonin, T.N. Khabiboulline, Y.M. Orlov, V. Poloubotko, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Fermi National Accelerator Laboratory; managed by Fermi Research Alliance, LLC under Contract No. DEAC02-07CH11359 with the U.S. Department of Energy
We pro­pose a novel de­sign of a de­flect­ing cav­ity for the ILC pro­ject with low par­a­sitic HOM losses and pre­serv­ing the beam emit­tance, which is crit­i­cal for op­er­a­tion with high beam cur­rent in­ten­sity. Mul­ti­ple elec­trodes im­mersed in the hol­low wave­guide form a trapped-mode res­onator. The trans­verse com­po­nents of the elec­tro­mag­netic field of the trapped di­pole mode in­duce a trans­verse kick and ef­fi­ciently de­flect charged par­ti­cles pass­ing through the cav­ity. We pre­sent a scal­able de­sign of a su­per­con­duct­ing Quasi-wave­guide Mul­ti­cell Res­onator (QMiR) seam­lessly con­nected with a beam vac­uum cham­ber. The cav­ity is com­pletely open at both ends, which sig­nif­i­cantly re­duces the max­i­mum loaded qual­ity fac­tor of the higher order modes (HOM), avoids com­plex HOM cou­plers and thus sim­pli­fies the me­chan­i­cal de­sign of the cav­ity. The same port is used to feed RF power to the op­er­at­ing mode and to ex­tract the same order modes (SOM). Fi­nally, we es­ti­mate the ex­pected cryo­genic losses, HOM im­ped­ance lim­its, RF input power re­quired, and fre­quency tun­ing for a QMiR cav­ity de­signed to op­er­ate at 2.6 GHz.
 
poster icon Poster TUPTB044 [6.975 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB044  
About • Received ※ 19 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 16 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRIBA04 Crab Cavities for ILC 990
 
  • P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S.A. Belomestnykh, I.V. Gonin, T.N. Khabiboulline, A. Lunin, Y.M. Orlov, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R. Calaga
    CERN, Meyrin, Switzerland
  • S.U. De Silva
    JLab, Newport News, Virginia, USA
  • J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • T. Okugi, A. Yamamoto
    KEK, Ibaraki, Japan
  • S. Verdú-Andrés, B.P. Xiao
    BNL, Upton, New York, USA
 
  For the 14 mrad cross­ing angle pro­posed, crab cav­ity sys­tems are fun­da­men­tally an­tic­i­pated for the vi­able op­er­a­tion of the In­ter­na­tional Lin­ear Col­lider (ILC), in order to max­imise its lu­mi­nos­ity per­for­mance. Since 2021, a spe­cial­ist de­vel­op­ment team have been defin­ing op­ti­mum crab cav­ity tech­nolo­gies which can ful­fil the op­er­a­tional re­quire­ments for ILC, both for its base­line cen­tre-of-mass en­ergy of 250 GeV, but also ex­tend­ing those re­quire­ments out to higher beam col­li­sion in­ten­si­ties. Five de­sign teams have es­tab­lished crab cav­ity tech­nol­ogy so­lu­tions, which have the ca­pa­bil­ity to also op­er­ate up to 1 TeV cen­tre-of-mass. This pre­sen­ta­tion show­cases the key per­for­mance ca­pa­bil­i­ties of these de­signs and their as­so­ci­ated ben­e­fits for both man­u­fac­ture and in­te­gra­tion into the ILC In­ter­ac­tion Re­gion. The rec­om­mended out­come of the re­cently con­ducted crab cav­ity tech­nol­ogy down-se­lec­tion, will also be high­lighted.  
slides icon Slides FRIBA04 [2.526 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-FRIBA04  
About • Received ※ 19 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 20 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)