Paper | Title | Page |
---|---|---|
TUPTB033 | On the Way to a 10 MeV, Conduction-Cooled, Compact SRF Accelerator | 471 |
|
||
Funding: The presentation has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. After the success of designing a compact 1 MeV, 1 MW accelerator based on conduction-cooled SRF, Jefferson Lab is now pursuing a concept to provide a tenfold increase of the beam energy. The higher energy significantly extends the range of applications for environmental remediation and industry in general. The obvious challenge for SRF is to move from a single-cell to a multicell cavity while maintaining high efficiency and the ability to operate the machine without a complex cryogenic plant. The contribution presents the latest results of this design study with respect to its centerpiece, a Nb₃Sn coated 915 MHz five-cell cavity and its corresponding RF components, i.e. FPC and HOM absorber, as well as the conduction-cooling concept based on commercially available cryocoolers. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB033 | |
About • | Received ※ 19 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 18 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB087 | Copper Plating Qualification Process for the Fundamental Power Coupler Waveguides for CEBAF Cryomodules | 790 |
|
||
Funding: Authored by Jefferson Science Associates, LLC, supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. To provide sufficient energy for CEBAF operation, cryomodules and components are being refurbished yearly as necessary. Copper plated fundamental power coupler waveguides are important components of the cryomodules. The integrity and quality of copper plating is critical to reduce the heat load from the waveguides into the He bath at 2.07 K. A search of copper plating resources is underway for plating or re-plating CEBAF-style waveguides. This effort ensures a continuous capability of copper plating on cryomodule components, especially on waveguides. To qualify plating vendors, the waveguide copper plating specifications were revisited, and a thorough plating evaluation process is being developed. The evaluation process ranges from coupon testing to sample waveguide qualification. Recent results are summarized and future work is planned. |
||
Poster WEPWB087 [1.582 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB087 | |
About • | Received ※ 15 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 11 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THIXA04 |
Development of a Prototype Superconducting Radio-Frequency Cavity for Conduction-Cooled Accelerators | |
|
||
Funding: Work supported by the U.S. DOE, ARDAP Office, under contract No. DE-AC05-06OR23177. SB¿s microscopy work at the NHMFL was partly supported by the U.S. DOE, HEP Office under Award No. DE-SC0009960. Recent progress in the development of high-quality Nb₃Sn film coatings along with the availability of cryocoolers with high cooling capacity at 4 K makes it feasible to operate SRF cavities cooled by thermal conduction at relevant accelerating gradients for use in accelerators. We have developed a prototype single-cell cavity to prove the feasibility of operation up to the accelerating gradient required for 1 MeV energy gain, cooled by conduction with cryocoolers. The cavity has a ~3 ¿m thick Nb₃Sn film on the inner surface, deposited on a ~4 mm thick bulk Nb substrate and a bulk ~7 mm thick Cu outer shell with three Cu attachment tabs. The cavity was tested up to a peak surface magnetic field of 53 mT in liquid He at 4.3 K. A horizontal test cryostat was designed and built to test the cavity cooled with three cryocoolers. The rf tests of the conduction-cooled cavity achieved a peak surface magnetic field of 50 mT and stable operation was possible with up to 18.5 W of rf heat load. The peak frequency shift due to microphonics was 23 Hz. These results represent the highest peak surface magnetic field achieved in a conduction-cooled SRF cavity to date |
||
Slides THIXA04 [3.906 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |