Author: McCaughan, M.D.
Paper Title Page
SATUT02
Cryomodule Testing and Beam Operation  
 
  • M.D. McCaughan
    JLab, Newport News, Virginia, USA
 
  This lecture will review measurement method of cryomodule test in a horizontal Dewar in the bunker. The difference between the bunker test and VTA test will be emphasized. The cavity operation with beam will be introduced. Some lessons and learned will be presented on the operation experience.  
slides icon Slides SATUT02 [12.958 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOIAA05 Commissioning of the Second JLAB C75 Cryomodule & Performance Evaluation of Installed C75 Cavities 14
 
  • M.D. McCaughan, G. Ciovati, G.K. Davis, M.A. Drury, T. Powers, A.V. Reilly
    JLab, Newport News, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
JLAB has long been a hub of SRF technology with the CEBAF accelerator as one of its first large scale adopters. As SRF technology has advanced, the C50 and C100 programs have allowed for the extension of CEBAF’s total energy to 6 GeV and nearly 12 GeV respectively. Along with the increase in energy reach, rates of accelerating gradient degradation have been extracted for these cryomodule designs. A plan to mitigate these losses & maintain robust gradient headroom to deliver the 12 GeV program ¿ the CEBAF Performance Plan¿ established a multi-year effort of cryomodule refurbishments and replacements. Part of this plan included a cost optimization of the C50 program with more modern processing techniques and the replacement of existing cavities with larger grain boundary cavities produced from ingot Niobium (dubbed C75 for 75 MeV gain). Reports have been made on the prototype pair of C75 cavities installed in a C50 cryomodule and the first full C75 cryomodule installed in 2017 and 2021. This paper reports on the results from the qualification of the cavities for the second C75 module in both a vertical cryostat and the commissioning results of the cryomodule in the CEBAF tunnel.
 
slides icon Slides MOIAA05 [1.810 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOIAA05  
About • Received ※ 19 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 02 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB081 Microphonics in the LCLS-II Superconducting Linac 302
 
  • R.D. Porter, S. Aderhold, L.E. Alsberg, D. Gonnella, J. Nelson, N.R. Neveu, L.M. Zacarias
    SLAC, Menlo Park, California, USA
  • A.T. Cravatta, J.P. Holzbauer, S. Posen
    Fermilab, Batavia, Illinois, USA
  • M.A. Drury, M.D. McCaughan, C.M. Wilson
    JLab, Newport News, Virginia, USA
  • G. Gaitan, N.A. Stilin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by the LCLS-II project
The LCLS-II project has installed a new superconducting linac at SLAC that consists of 35 1.3 GHz cryomodules and 2 3.9 GHz cryomodules. The linac will provide a 4 GeV electron beam for generating soft and hard X-ray pulses. Cavity detuning induced by microphonics was a significant design challenge for the LCLS-II cryomodules. Cryomodules were produced that were within the detuning specification (10 Hz for 1.3 GHz cryomodules) on test stands. Here we present first measurements of the microphonics in the installed LCLS-II superconducting linac. Overall, the microphonics in the linac are manageable with 94% of cavities coming within the detune specification. Only two cavities are gradient limited due to microphonics. We identify a leaking cool down valve as the source of microphonics limiting those two cavities.
 
poster icon Poster MOPMB081 [1.284 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB081  
About • Received ※ 18 June 2023 — Revised ※ 29 June 2023 — Accepted ※ 30 June 2023 — Issue date ※ 01 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB090 Measuring Q₀ in LCLS-II Cryomodules Using Helium Liquid Level 327
 
  • L.M. Zacarias, S. Aderhold, D. Gonnella, J.T. Maniscalco, J. Nelson, R.D. Porter
    SLAC, Menlo Park, California, USA
  • A.T. Cravatta, J.P. Holzbauer, S. Posen
    Fermilab, Batavia, Illinois, USA
  • M.A. Drury, M.D. McCaughan, C.M. Wilson
    JLab, Newport News, Virginia, USA
 
  The nitrogen-doped cavities used in the Linac Coherent Light Source II (LCLS-II) cryomodules have shown an unprecedented high Q₀ in vertical and cryomodule testing compared with cavities prepared with standard methods. While demonstration of high Q₀ in the test stand has been achieved, maintaining that performance in the linac is critical to the success of LCLS-II and future accelerator projects. The LCLS-II cryomodules required a novel method of measuring Q₀, due to hardware incompatibilities with existing procedures. Initially developed at Jefferson Lab during cryomodule acceptance testing before being used in the tunnel at SLAC, we use helium liquid level data to estimate the heat generated by cavities. We first establish the relationship between the rate of helium evaporation from known heat loads using electric heaters, and then use that relationship to determine heat from an RF load. Here we present the full procedure along with the development process, lessons learned, and reproducibility while demonstrating for the first time that world record Q₀ can be maintained within the real accelerator environment.  
poster icon Poster MOPMB090 [1.867 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB090  
About • Received ※ 20 June 2023 — Revised ※ 28 June 2023 — Accepted ※ 30 June 2023 — Issue date ※ 13 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)