Author: Orlov, Y.M.
Paper Title Page
MOPMB065 Design Status of BCC Cryomodule for LCLS-II HE 263
 
  • C.S. Narug, T.T. Arkan, S. Cheban, M. Chen, B.D. Hartsell, J.A. Kaluzny, V.S. Kashikhin, Y.M. Orlov
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
A Buncher or Capture Cavity (BCC) Cryomodule is currently in development at Fermilab for use in a second injector for LCLS-II-HE. The BCC Cryomodule is designed to contain one 1.3 GHz cavity and one solenoid magnet as part of a 100MeV low emittance injector. The design considerations for the Cryomodule are similar to the LCLS-II cryomodule with additional requirements to account for additional vacuum loading at the end of this vessel due to the termination of the insulating vacuum. To accomplish this design, the cryomodule is being developed using the experience gained during the development of the LCLS-II cryomodule. The design, analysis, and status of the Cryomodule will be discussed.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB065  
About • Received ※ 18 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 13 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB044 Compact Multicell Superconducting Crab Cavity for ILC 521
 
  • A. Lunin, S.A. Belomestnykh, I.V. Gonin, T.N. Khabiboulline, Y.M. Orlov, V. Poloubotko, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Fermi National Accelerator Laboratory; managed by Fermi Research Alliance, LLC under Contract No. DEAC02-07CH11359 with the U.S. Department of Energy
We propose a novel design of a deflecting cavity for the ILC project with low parasitic HOM losses and preserving the beam emittance, which is critical for operation with high beam current intensity. Multiple electrodes immersed in the hollow waveguide form a trapped-mode resonator. The transverse components of the electromagnetic field of the trapped dipole mode induce a transverse kick and efficiently deflect charged particles passing through the cavity. We present a scalable design of a superconducting Quasi-waveguide Multicell Resonator (QMiR) seamlessly connected with a beam vacuum chamber. The cavity is completely open at both ends, which significantly reduces the maximum loaded quality factor of the higher order modes (HOM), avoids complex HOM couplers and thus simplifies the mechanical design of the cavity. The same port is used to feed RF power to the operating mode and to extract the same order modes (SOM). Finally, we estimate the expected cryogenic losses, HOM impedance limits, RF input power required, and frequency tuning for a QMiR cavity designed to operate at 2.6 GHz.
 
poster icon Poster TUPTB044 [6.975 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB044  
About • Received ※ 19 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 16 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRIBA04 Crab Cavities for ILC 990
 
  • P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S.A. Belomestnykh, I.V. Gonin, T.N. Khabiboulline, A. Lunin, Y.M. Orlov, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R. Calaga
    CERN, Meyrin, Switzerland
  • S.U. De Silva
    JLab, Newport News, Virginia, USA
  • J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • T. Okugi, A. Yamamoto
    KEK, Ibaraki, Japan
  • S. Verdú-Andrés, B.P. Xiao
    BNL, Upton, New York, USA
 
  For the 14 mrad crossing angle proposed, crab cavity systems are fundamentally anticipated for the viable operation of the International Linear Collider (ILC), in order to maximise its luminosity performance. Since 2021, a specialist development team have been defining optimum crab cavity technologies which can fulfil the operational requirements for ILC, both for its baseline centre-of-mass energy of 250 GeV, but also extending those requirements out to higher beam collision intensities. Five design teams have established crab cavity technology solutions, which have the capability to also operate up to 1 TeV centre-of-mass. This presentation showcases the key performance capabilities of these designs and their associated benefits for both manufacture and integration into the ILC Interaction Region. The recommended outcome of the recently conducted crab cavity technology down-selection, will also be highlighted.  
slides icon Slides FRIBA04 [2.526 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-FRIBA04  
About • Received ※ 19 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 20 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)