Author: Ozeki, K.
Paper Title Page
MOIXA04 Operational Experience for RIKEN Superconducting Linear Accelerator 30
 
  • K. Yamada, M. Fujimaki, H. Imao, O. Kamigaito, M. Komiyama, K. Kumagai, T. Nagatomo, T. Nishi, H. Okuno, K. Ozeki, N. Sakamoto, K. Suda, A. Uchiyama, T. Watanabe, Y. Watanabe
    RIKEN Nishina Center, Wako, Japan
 
  The RIKEN superconducting heavy-ion linac, so-called SRILAC, has been successfully operating for almost four years, and continuously deliver a heavy ion beam for a super-heavy-element synthesis experiment. The effects of a broken coupler in the early days and four years of operation have resulted in increased X-ray emission levels in several superconducting cavities, which have been successfully corrected by pulse conditioning. This talk will share the experiences and lessons learned from four-year operation with low beta SC-cavities.  
slides icon Slides MOIXA04 [4.517 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOIXA04  
About • Received ※ 06 July 2023 — Revised ※ 10 July 2023 — Accepted ※ 19 August 2023 — Issue date ※ 22 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB085 Degradation and Recovery of Cavity Performance in SRILAC Cryomodules at RIBF 784
 
  • N. Sakamoto, O. Kamigaito, K. Ozeki, K. Suda, K. Yamada
    RIKEN Nishina Center, Wako, Japan
 
  The RIKEN superconducting (SC) heavy-ion linear accelerator (SRILAC) has been providing beam supply for super-heavy elements synthesis experiments since its commissioning in January 2020. However, the long-term operation of SC radio-frequency (RF) cavities leads an increase in the X-ray levels caused by field emissions resulting from changes in the inner surface conditions. More than half of the ten SC 1/4 wavelength resonators (SC-QWRs) of SRILAC, operating at a frequency of 73 MHz, have experienced an increase in X-ray levels, thus, requiring adjustments to the acceleration voltage for continuous operation. While several conditioning methods have been employed for SC cavities, a fully established technique is yet to be determined. To address this situation, a relatively simple conditioning method was implemented at RIKEN. The proposed method uses high-voltage pulsed power and imposes a low load on the cavities.  
poster icon Poster WEPWB085 [12.789 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB085  
About • Received ※ 13 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 01 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB101 Present Status of RIKEN Power Couplers for SRILAC 823
 
  • K. Ozeki, O. Kamigaito, N. Sakamoto, K. Suda, K. Yamada
    RIKEN Nishina Center, Wako, Japan
 
  The heavy ion linac of the RIKEN, utilizing superconducting technology, began operations in September 2019. Over the following 13 months, two of the ten superconducting accelerating cavities experienced vacuum leaks from the vacuum windows of the fundamental power couplers (FPCs). Currently, additional vacuum windows are installed on all ten FPCs and the beam supply continues without encountering any major issues with the FPCs. Additionally, the fabrication of ten replacement FPCs has been completed, addressing the underlying issues that led to the deterioration of the vacuum window strength. Currently, we are conducting radio frequency (RF) process of the new FPCs. In addition, we are designing a bias applying component to suppress multipacting in the FPCs. This paper reports the status of these issues related to the FPCs at the RIKEN.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB101  
About • Received ※ 19 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 14 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)