Author: Pfeiffer, S.
Paper Title Page
WEIXA03 Optimizing the Manufacture of High-Purity Niobium SRF Cavities Using the Forming Limit Diagram: A Case Study of the HL-LHC Crab Cavities RFD Pole 627
 
  • A. Gallifa Terricabras, I. Aviles Santillana, S. Barrière, M. Garlasché, L. Prever-Loiri, J.S. Swieszek
    CERN, Meyrin, Switzerland
  • E. Cano-Pleite
    UC3M, Leganes, Spain
  • M. Narduzzi
    Fermilab, Batavia, Illinois, USA
  • S. Pfeiffer
    European Organization for Nuclear Research (CERN), Geneva, Switzerland
 
  Funding: CERN HL-LHC
The Crab Cavities are key components of the High Luminosity Large Hadron Collider (HL-LHC) project at CERN, which aims to increase the integrated luminosity of the LHC, the world’s largest particle accelerator, by a factor of ten. This paper explores the application of the Forming Limit Diagram (FLD) to enhance the manufacturing process of complex-shape Nb-based cavities, with a focus on the formability challenges experienced with the pole of the Radio Frequency Dipole (RFD) Crab Cavities. The study includes the material characterization of ultra-high-purity niobium (Nb RRR300) sheets, namely mechanical tests and microstructural analysis; it also contains large-deformation Finite Element simulations of the pole deep drawing process, and the translation of the resulting strains in a FLD diagram, together with several suggestions on how to improve the manufacturing process of such deep drawn parts. The results of this study can provide valuable insights into improving the design and fabrication of complex-shaped superconducting radio-frequency cavities made by large-deformation metal-sheet forming processes.
 
slides icon Slides WEIXA03 [15.991 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEIXA03  
About • Received ※ 18 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 27 June 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)