Paper | Title | Page |
---|---|---|
MOIXA02 | PIP-II Project Overview and Status | 19 |
|
||
Funding: Prepared by PIP-II Project using resources of the Fermi National Accelerator Laboratory, a U.S. DOE facility, managed by Fermi Research Alliance, LLC, acting under Contract No. DE-AC02-07CH11359. The Proton Improvement Plan II (PIP-II) project is an essential upgrade to Fermilab’s particle accelerator complex to enable the world’s most intense neutrino beam for LBNF/DUNE and a broad particle physics program for many decades to come. PIP-II will deliver 1.2 MW of proton beam power from the Main Injector, upgradeable to multi-MW capability. The central element of PIP-II is an 800 MeV superconducting radio frequency (SRF) linac, which comprises a room temperature front end followed by an SRF section. The SRF section consists of five different flavors of cavities/cryomodules, including Half Wave Resonators (HWR), Single Spoke and elliptical resonators operating at, or above, state-of-the-art parameters. The first two PIP-II cryomodules, Half Wave Resonator (HWR) and Single Spoke Resonator 1 (SSR1) were installed in the PIP-II Injector Test facility (PIP2IT) and have accelerated beam to above 17 MeV. PIP-II is the first U.S. accelerator project that will be constructed with significant contributions from international partners, including India, Italy, France, United Kingdom and Poland. The project was baselined in April 2022, and the construction phase is underway. |
||
Slides MOIXA02 [3.353 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOIXA02 | |
About • | Received ※ 07 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 16 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMB029 | Exploring the Dynamics of Transverse Inter-Planar Coupling in the Superconducting Section of the PIP-II Linac | 155 |
|
||
This study investigates the crucial role that an accurate understanding of inter-planar coupling in the transverse plane plays in regulating charged particle dynamics in a high-intensity linear accelerator and minimizing foil/septum impacts during injection from the linac to a ring. We in-depth analyze the emergence and evolution of transverse inter-planar coupling through multiple active lattice elements, taking into account space charge and field nonlinearities in the superconducting section of the PIP-II linac. The article compares various analytical, numerical, and experimental techniques for measuring transverse coupling using beam and lattice matrices and provides insight into effective strategies for its mitigation prior to ring injectio | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB029 | |
About • | Received ※ 21 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 05 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |