Paper | Title | Page |
---|---|---|
WEPWB063 | Final Design of the LB650 Cryomodule for the PIP-II Linear Accelerator | 721 |
|
||
The Proton Improvement Plan II (PIP-II) that will be installed at Fermilab is the first U.S. accelerator project that will have significant contributions from international partners. CEA joined the international collaboration in 2018, and its scope covers the supply of the 650 MHz low-beta cryomodule section, with the design of the cryostat (i.e the cryomodule without the cavities, the power couplers and the frequency tuning systems) and the manufacturing of its components, the assembly and tests of the pre-production cryomodule and 9 production modules. An important milestone was reached in April 2023 with the Final Design Review. This paper presents the detailed design of the 650 MHz low-beta cryomodules. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB063 | |
About • | Received ※ 21 June 2023 — Revised ※ 28 June 2023 — Accepted ※ 04 July 2023 — Issue date ※ 20 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB066 | Final Design of the Production SSR1 Cryomodule for PIP-II Project at Fermilab | 736 |
|
||
Funding: Work supported by Fermi Research Alliance, LLC under Contract No. DEAC02- 07CH11359 with the United States Department of Energy, Office of Science, Office of High Energy Physics. This contribution reports the design of the production Single Spoke Resonator Type 1 Cryomodule (SSR1 CM) for the PIP-II project at Fermilab. The innovative design is based on a structure, the strongback, which supports the coldmass from the bottom, stays at room temperature during operations, and can slide longitudinally with respect to the vacuum vessel. The Fermilab style cryomodule developed for the prototype Single Spoke Resonator Type 1 (pSSR1), the prototype High Beta 650 MHz (pHB650), and preproduction Single Spoke Resonator Type 2 (ppSSR2) cryomodules is the baseline of the present design. The focus of this contribution is on the results of calculations and finite element analyses performed to optimize the critical components of the cryomodule: vacuum vessel, strongback, thermal shield, and magnetic shield. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB066 | |
About • | Received ※ 17 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 15 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB067 | HB650 Cryomodule Design: From Prototype to Production | 741 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. In early 2023 the assembly of the prototype HB650 cryomodule (pHB650 CM) was completed and cold tests started to evaluate its performance. The lessons learned from the design, assembly and preliminary cold tests of this cryomodule, and from the design of the SSR2 pre-production cryomodule played a fundamental role during the design optimization process of the production HB650 cryomodule (HB650 CM). Several workshops have been organized to share experiences and solve problems. This paper presents the main design changes from pHB650 to the HB650 production cryomodules and their impact on the heat loads. |
||
Poster WEPWB067 [2.178 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB067 | |
About • | Received ※ 18 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 01 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB073 | Prototype HB650 Cryomodule Heat Loads Simulations | 755 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. During the design stages of the PIP-II cryomodules, many analytical calculations and FEA have been performed on simpler geometry in order to estimate the heat loads and also to optimize the design. To better analyze the cryomodule cold tests, simulations have been performed with MATLAB to determine the temperature of the main components during cool down and to determine the heat loads of the cryomodule. These simulations have been applied to the High Beta 650 MHz prototype cryomodule design and compared to the cold tests performed on it. |
||
Poster WEPWB073 [1.981 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB073 | |
About • | Received ※ 19 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 28 June 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB075 | Impact of Solenoid Induced Residual Magnetic Fields on the Prototype SSR1 CM Performance | 760 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. A prototype cryomodule containing eight Single Spoke Resonators type-1 (SSR1) operating at 325 MHz and four superconducting focusing lenses was successfully assembled, cold tested, and accelerated beam in the framework of the PIP-II project at Fermilab. The impact of induced residual magnetic fields from the solenoids on performance of cavities is presented in this contribution. In addition, design optimizations for the production cryomodules as a result of this impact are highlighted. |
||
Poster WEPWB075 [2.429 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB075 | |
About • | Received ※ 26 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 11 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |