Paper | Title | Page |
---|---|---|
WEPWB131 | Demonstration of Magnetron as an Alternative RF Source for SRF Accelerators | 902 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177, and DOE OS/ARDAP Accelerator Stewardship award 2019-2023. Magnetron has been considered as alternate high-efficiency, low-cost RF sources for linacs and storage rings [1] for national labs and industrial applications. After the demonstration of magnetrons power to drive and combine for a radio frequency cavity at 2450 MHz in CW mode, we have used trim coils adding to a water-cooled magnetron and amplitude modulation feedback to further suppress the side-band noise to -46.7 dBc level. We also demonstrated the phase-locking to an industrial grade cooking magnetron transmitter at 915 MHz with a 75 kW CW power delivered to a water load by using a -26.6 dBc injection signal [2]. The sideband noise from the 3-Phase SCRs DC power supply can be reduced to -16.2 dBc level. Further noise reduction and their power combining scheme using magic-tee and cavity type combiners for higher power application (2x75kW) are to be presented. We intent to use one power station to drive the normal conducting and superconducting RF cavities for the inductrial linac. We also going to demonstarte a vertical SRF cavity test with a high input coupling Q using a 2.45GHz magnetron and comparing with a baseline test result using a solid state amplifier. [1]. doi:10.18429/JACoW-IPAC2015-WEPWI028. [2]. doi:10.18429/JACoW-NAPAC2022-WEZD3. |
||
Poster WEPWB131 [2.445 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB131 | |
About • | Received ※ 16 June 2023 — Revised ※ 28 June 2023 — Accepted ※ 30 June 2023 — Issue date ※ 19 August 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THIAA02 | RF Performance Results of RF Double Quarter Wave Resonators for LHC High Luminosity Project | 925 |
|
||
The LHC High Luminosity (HL-LHC) project includes, among other key items, the installation of superconducting crab cavities in the LHC machine. The Double Quarter Wave (DQW) crab cavity will be utilised to compensate for the effects of the vertical crossing angle. Two bare DQW series cavities were manufactured in Germany by RI Research Instruments and validated successfully at CERN through a cold test at 2K. Two DQW series cavities were produced in-house at CERN, integrated into a titanium helium tank, and equipped with RF ancillaries. This paper addresses the cavities preparation processes and summarizes the results of cryogenic tests of DQW cavities at CERN | ||
Slides THIAA02 [10.840 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-THIAA02 | |
About • | Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 01 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FRIBA06 |
Operational Experience From 8 Years of ELBE SRF-Gun II | |
|
||
At the electron accelerator for beams with high brilliance and low emittance (ELBE), the second version of a superconducting radio-frequency (SRF) photoinjector was brought into operation in 2014. After a period of commissioning, a gradual transfer to routine operation took place in 2017, so that now more than 1800h of user beam are generated every year. Since the commission, a total of 24 cathodes (2 Cu, 12 Mg, 10 Cs₂Te) have been used, without observing serious cavity degradation. The contribution summarizes commissioning and operational experience of the last 8 years of gun operation, with special emphasis on SRF properties but also on specialties such as dark current and multipacting that are directly linked to the integration of a normal conducting cathode into the SRF cavity. | ||
Slides FRIBA06 [6.709 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |