Author: Antoine, C.Z.
Paper Title Page
WECAA01 Progress in European Thin Film Activities 607
 
  • C. Pira, O. Azzolini, R. Caforio, E. Chyhyrynets, D. Fonnesu, D. Ford, V.A. Garcia, G. Keppel, G. Marconato, A. Salmaso, F. Stivanello
    INFN/LNL, Legnaro (PD), Italy
  • C.Z. Antoine, Y. Kalboussi, Th. Proslier
    CEA-IRFU, Gif-sur-Yvette, France
  • C. Benjamin, O.B. Malyshev, N. Marks, B.S. Sian, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C. Benjamin, J.W. Bradley, G. Burt, O.B. Malyshev, N. Marks, D.J. Seal, B.S. Sian, S. Simon, D.A. Turner, R. Valizadeh
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S. Berry
    CEA-DRF-IRFU, France
  • R. Berton, D. Piccoli, F. Piccoli, G. Squizzato, F. Telatin
    Piccoli, Noale (VE), Italy
  • M. Bertucci, R. Paparella
    INFN/LASA, Segrate (MI), Italy
  • M. Bonesso, S. Candela, V. Candela, R. Dima, G. Favero, A. Pepato, P. Rebesan, M. Romanato
    INFN- Sez. di Padova, Padova, Italy
  • J.W. Bradley, S. Simon
    The University of Liverpool, Liverpool, United Kingdom
  • G. Burt, D.J. Seal, D.A. Turner
    Lancaster University, Lancaster, United Kingdom
  • O. Hryhorenko, D. Longuevergne
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • X. Jiang, T. Staedler, A.O. Zubtsovskii
    University Siegen, Siegen, Germany
  • S. Keckert, J. Knobloch, O. Kugeler
    HZB, Berlin, Germany
  • J. Knobloch
    University of Siegen, Siegen, Germany
  • N.L. Leicester
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • A. Medvids, A. Mychko, P. Onufrijevs
    Riga Technical University, Riga, Latvia
  • S. Prucnal, S. Zhou
    HZDR, Dresden, Germany
  • R. Ries
    Slovak Academy of Sciences, Institute of Electrical Engineering, Bratislava, Slovak Republic
  • E. Seiler
    IEE, Bratislava, Slovak Republic
  • L.G.P. Smith
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  Funding: This project has received funding from the European Union s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730.
Thin-film cavities with higher Tc superconductors (SC) than Nb promise to move the operating temperature from 2 to 4.5 K with savings 3 orders of magnitude in cryogenic power consumption. Several European labs are coordinating their efforts to obtain a first 1.3 GHz cavity prototype through the I.FAST collaboration and other informal collaborations with CERN and DESY. R&D covers the entire production chain. In particular, new production techniques of seamless Copper and Niobium elliptical cavities via additive manufacturing are studied and evaluated. New acid-free polishing techniques to reduce surface roughness in a more sustainable way such as plasma electropolishing and metallographic polishing have been tested. Optimization of coating parameters of higher Tc SC than Nb (Nb₃Sn, V₃Si, NbTiN) via PVD and multilayer via ALD are on the way. Finally, rapid heat treatments such as Flash Lamp Annealing and Laser Annealing are used to avoid or reduce Cu diffusion in the SC film. The development and characterization of SC coatings is done on planar samples, 6 GHz cavities, choke cavities, QPR and 1.3 GHz cavities. This work presents the progress status of these coordinated efforts.
 
slides icon Slides WECAA01 [15.846 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WECAA01  
About • Received ※ 18 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 02 September 2023 — Issue date ※ 02 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIBA01 Surface Engineering by ALD for Superconducting RF Cavities 615
 
  • Y. Kalboussi, C.Z. Antoine, M. Baudrier, Q. Bertrand, C. Boulch, B. Delatte, G. Jullien, L. Maurice, Th. Proslier, P. Sahuquet, T.V. Vacher
    CEA-IRFU, Gif-sur-Yvette, France
  • M. Asaduzzaman, T. Junginger
    UVIC, Victoria, Canada
  • M. Asaduzzaman
    TRIUMF, Vancouver, Canada
  • D. Dragoe
    ICMMO, Orsay, France
  • F. Éozénou
    CEA-DRF-IRFU, France
  • N. Lochet
    CEA, DES, Université Paris-Saclay, Gif-sur-Yvette, France
  • D. Longuevergne, T. Pépin-Donat
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • F. Miserque
    CEA, LECA, Université Paris-Saclay, Gif-sur-Yvette, France
 
  Atomic Layer Deposition is a synthesis method that enable a unique control of thin films chemical composition and thickness over complex shape objects such as SRF cavities. This level of control opens the way to new surface treatments and to study their effect on RF cavity performances. We will present coupon and, in some cases, preliminary cavity results, from various surface engineering routes based on the deposition of thin oxides and nitrides films combined with post annealing treatments and study their interactions with the niobium. Three main research directions will be presented: 1/ replacing the niobium oxides by other surface layers (Al₂O₃, Y2O3, MgO) and probe their effect on the low and high field performances, 2/ doping with N and combine approaches 1/ and 2/ and finally 3/ optimize the superconducting properties of NbTiN multilayers on Nb and Sapphire.  
slides icon Slides WEIBA01 [13.613 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEIBA01  
About • Received ※ 06 July 2023 — Revised ※ 12 August 2023 — Accepted ※ 19 August 2023 — Issue date ※ 19 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIXA06 Recent Advances in Metallographic Polishing for SRF Application 646
 
  • O. Hryhorenko
    JLab, Newport News, Virginia, USA
  • C.Z. Antoine, F. Éozénou, Th. Proslier
    Université Paris-Saclay, CEA, Gif-sur-Yvette, France
  • T. Dohmae
    KEK, Ibaraki, Japan
  • S. Keckert, J. Knobloch, O. Kugeler
    HZB, Berlin, Germany
  • D. Longuevergne
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
 
  Funding: ENSAR-2 under grant agreement N° 654002. IFAST under Grant Agreement No 101004730. The U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
This talk is an overview of the metallographic polishing R&D program covering Niobium and Copper substrates treatment for thin film coating as an alternative fabrication pathway for 1.3 GHz elliptical cavities. The presented research is the result of a collaborative effort between IJCLab, CEA/Irfu, HZB, and KEK in order to develop innovative surface processing and cavity fabrication protocols capable of meeting stringent requirements for SRF surfaces, including the reduction of safety risks and ecological footprint, enhancing reliability, improving the surface roughness, and potentially allowing cost reduction. The research findings will be disclosed.
 
slides icon Slides WEIXA06 [7.469 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEIXA06  
About • Received ※ 16 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 14 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB050 Exploring Innovative Pathway for SRF Cavity Fabrication 680
 
  • O. Hryhorenko
    JLab, Newport News, Virginia, USA
  • C.Z. Antoine
    Université Paris-Saclay, CEA, Gif-sur-Yvette, France
  • T. Dohmae
    KEK, Ibaraki, Japan
  • D. Longuevergne
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: ENSAR-2 under grant agreement N° 654002. The U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
This article shows a study on an alternative pathway for the fabrication of a complete 1.3 GHz SRF cavity, aiming at improving production reliability, reducing the use of chemical polishing (EP or BCP) which is a costly and safety-critical step, and preserving surface quality after forming. Unlike the conventional pathway, the fabrication process is performed after polishing. This point is crucial as the used polishing technology could be applied only to flat geometries. The performed investigation demonstrates that damages during the fabrication process are considered minor, localized, and limited to the near-surface. Moreover, these studies confirm that the damaged layer (100-200 µm) is mainly caused by the rolling process, and not by the subsequent fabrication steps. A laser confocal microscope and SEM-EBSD technique were used to compare samples before and after forming. The preliminary results are discussed and presented in this paper.
 
poster icon Poster WEPWB050 [2.263 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB050  
About • Received ※ 20 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 01 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)