Author: Gonin, I.V.
Paper Title Page
TUPTB044 Compact Multicell Superconducting Crab Cavity for ILC 521
 
  • A. Lunin, S.A. Belomestnykh, I.V. Gonin, T.N. Khabiboulline, Y.M. Orlov, V. Poloubotko, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Fermi National Accelerator Laboratory; managed by Fermi Research Alliance, LLC under Contract No. DEAC02-07CH11359 with the U.S. Department of Energy
We propose a novel design of a deflecting cavity for the ILC project with low parasitic HOM losses and preserving the beam emittance, which is critical for operation with high beam current intensity. Multiple electrodes immersed in the hollow waveguide form a trapped-mode resonator. The transverse components of the electromagnetic field of the trapped dipole mode induce a transverse kick and efficiently deflect charged particles passing through the cavity. We present a scalable design of a superconducting Quasi-waveguide Multicell Resonator (QMiR) seamlessly connected with a beam vacuum chamber. The cavity is completely open at both ends, which significantly reduces the maximum loaded quality factor of the higher order modes (HOM), avoids complex HOM couplers and thus simplifies the mechanical design of the cavity. The same port is used to feed RF power to the operating mode and to extract the same order modes (SOM). Finally, we estimate the expected cryogenic losses, HOM impedance limits, RF input power required, and frequency tuning for a QMiR cavity designed to operate at 2.6 GHz.
 
poster icon Poster TUPTB044 [6.975 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB044  
About • Received ※ 19 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 16 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB047 The Evaluation of Mechanical Properties of LB650 Cavities 536
 
  • G. Wu, S.D. Adams, D.J. Bice, S.K. Chandrasekaran, I.V. Gonin, C.J. Grimm, J.P. Holzbauer, T.N. Khabiboulline, C.S. Narug, J.P. Ozelis, H. Park, G.V. Romanov, R. Thiede, R. Treece, A.D. Wixson
    Fermilab, Batavia, Illinois, USA
  • K.E. McGee
    FRIB, East Lansing, Michigan, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The 650 MHz cavities have a stronger requirement of niobium mechanical properties because of the geometric shape of the cavity due to reduced beta. The mechanical property of the niobium half-cell was measured following various heat treatments. The 5-cell cavities were tested in a controlled drop test fashion and the real-world road test. The result showed that the 900C heat treatment was compatible with cavity handling and transportation during production. The test provides the bases of the transportation specification and shipping container design guidelines.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB047  
About • Received ※ 19 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 14 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB133 Testing of the 2.6 GHz SRF Cavity Tuner for the Dark Photon Experiment at 2 K 907
 
  • C. Contreras-Martinez, B. Giaccone, I.V. Gonin, T.N. Khabiboulline, O.S. Melnychuk, Y.M. Pischalnikov, S. Posen, O.V. Pronitchev, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  At FNAL two 2.6 GHz SRF cavities are being used to search for dark photons, the experiment can be conducted at 2 K or in a dilution refrigerator. Precise frequency tuning is required for these two cavities so they can be matched in frequency. A cooling capacity constraint on the dilution refrigerator only allows piezo actuators to be part of the design of the 2.6 GHz cavity tuner. The tuner is equipped with three encapsulated piezo that deliver the long- and short-range frequency tuning. Modifications were implemented on the first tuner design due to the low forces on the piezos due to the cavity. Three brass rods with Belleville washers were added to the design to increase the overall force on the piezos. The results at 2 K of testing this tuner with and without the modification will be presented.  
poster icon Poster WEPWB133 [0.829 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB133  
About • Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 04 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THIXA07
Compact, High-Power Superconducting Electron Linear Accelerators for Environmental and Industrial Applications: Projects and Status  
 
  • J.C.T. Thangaraj, R. Dhuley, C.J. Edwards, I.V. Gonin, S. Kazakov, T.N. Khabiboulline, T.K. Kroc, T.H. Nicol, W. Pellico, A. Saini, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  We have developed and demonstrated a novel superconducting accelerator technology ¿ conduction cooling - that eliminates the need for liquid Helium, thus dramatically simplifying the infrastructure needed to access SRF technology for industrial applications. Our machine combines R&D breakthroughs in high-temperature SRF cavities (Nb₃Sn), cost-effective radio-frequency sources, modern technology cryo-coolers, and high-average current electron guns. We will describe currently active conduction-cooled accelerator projects at 650 MHz and 1.3 GHz. We will also present the experimental results on the conduction cooling of SRF cavities and briefly discuss results from other labs. Our compact linac is designed to generate electron beam energies up to 10 MeV in continuous-wave operation. Our detailed thermal, RF, and beam transport simulations show that a single accelerator module can deliver average beam power as high as 250 kW. We can reach up to 1 MW by combining several modules. Compact and light enough to mount on mobile platforms, our machine will enable applications such as treating contaminants in water, innovative pavement construction, and X-ray medical device sterilization.  
slides icon Slides THIXA07 [3.113 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRIBA04 Crab Cavities for ILC 990
 
  • P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S.A. Belomestnykh, I.V. Gonin, T.N. Khabiboulline, A. Lunin, Y.M. Orlov, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R. Calaga
    CERN, Meyrin, Switzerland
  • S.U. De Silva
    JLab, Newport News, Virginia, USA
  • J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • T. Okugi, A. Yamamoto
    KEK, Ibaraki, Japan
  • S. Verdú-Andrés, B.P. Xiao
    BNL, Upton, New York, USA
 
  For the 14 mrad crossing angle proposed, crab cavity systems are fundamentally anticipated for the viable operation of the International Linear Collider (ILC), in order to maximise its luminosity performance. Since 2021, a specialist development team have been defining optimum crab cavity technologies which can fulfil the operational requirements for ILC, both for its baseline centre-of-mass energy of 250 GeV, but also extending those requirements out to higher beam collision intensities. Five design teams have established crab cavity technology solutions, which have the capability to also operate up to 1 TeV centre-of-mass. This presentation showcases the key performance capabilities of these designs and their associated benefits for both manufacture and integration into the ILC Interaction Region. The recommended outcome of the recently conducted crab cavity technology down-selection, will also be highlighted.  
slides icon Slides FRIBA04 [2.526 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-FRIBA04  
About • Received ※ 19 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 20 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)