Author: Morris, D.G.
Paper Title Page
MOIAA01 FRIB Transition to User Operations, Power Ramp Up, and Upgrade Perspectives 1
 
  • J. Wei, H. Ao, B. Arend, S. Beher, G. Bollen, N.K. Bultman, F. Casagrande, W. Chang, Y. Choi, S. Cogan, C. Compton, M. Cortesi, J.C. Curtin, K.D. Davidson, X.J. Du, K. Elliott, B. Ewert, A. Facco, A. Fila, K. Fukushima, V. Ganni, A. Ganshyn, T.N. Ginter, T. Glasmacher, J.-W. Guo, Y. Hao, W. Hartung, N.M. Hasan, M. Hausmann, K. Holland, H.-C. Hseuh, M. Ikegami, D.D. Jager, S. Jones, N. Joseph, T. Kanemura, S.H. Kim, C. Knowles, T. Konomi, B.R. Kortum, E. Kwan, T. Lange, M. Larmann, T.L. Larter, K. Laturkar, R.E. Laxdal, J. LeTourneau, Z. Li, S.M. Lidia, G. Machicoane, C. Magsig, P.E. Manwiller, F. Marti, T. Maruta, E.S. Metzgar, S.J. Miller, Y. Momozaki, D.G. Morris, M. Mugerian, I.N. Nesterenko, C. Nguyen, P.N. Ostroumov, M.S. Patil, A.S. Plastun, L. Popielarski, M. Portillo, J. Priller, X. Rao, M.A. Reaume, K. Saito, B.M. Sherrill, M.K. Smith, J. Song, M. Steiner, A. Stolz, O. Tarasov, B.P. Tousignant, R. Walker, X. Wang, J.D. Wenstrom, G. West, K. Witgen, M. Wright, T. Xu, Y. Yamazaki, T. Zhang, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • K. Hosoyama
    KEK, Ibaraki, Japan
  • P. Hurh
    Fermilab, Batavia, Illinois, USA
  • M.P. Kelly, Y. Momozaki
    ANL, Lemont, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
  • S.O. Prestemon
    LBNL, Berkeley, California, USA
  • M. Wiseman
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
After pro­ject com­ple­tion on scope, on cost, and ahead of sched­ule, the Fa­cil­ity for Rare Iso­tope Beams began op­er­a­tions for sci­en­tific users in May of 2022. Dur­ing the first 12 months of user op­er­a­tions, the FRIB ac­cel­er­a­tor com­plex de­liv­ered 5250 beam hours, in­clud­ing 1528 hours to nine sci­ence ex­per­i­ments con­ducted with pri­mary beams of 36Ar, 48Ca, 70Zn, 82Se, 124Xe, and 198Pt at beam en­er­gies >200 MeV/u; 2724 hours for beam de­vel­op­ments, stud­ies, and tun­ing; and 998 hours to in­dus­trial users and non-sci­en­tific pro­grams using the FRIB Sin­gle Event Ef­fect (FSEE) beam line. The ramp-up to a beam power of 400 kW is planned over a six-year pe­riod; 1 kW was de­liv­ered for ini­tial user runs from in 2022, and 5 kW was de­liv­ered as of Feb­ru­ary 2023. Up­grade plans in­clude dou­bling the pri­mary-beam en­ergy to 400 MeV/nu­cleon for en­hanced dis­cov­ery po­ten­tial (¿FRIB 400¿). This talk re­ports on FRIB sta­tus and progress since SR­F2021, em­pha­siz­ing lessons learned dur­ing the tran­si­tion from beam com­mis­sion­ing to ma­chine op­er­a­tions, chal­lenges and res­o­lu­tions for the power ramp-up, progress with ac­cel­er­a­tor im­prove­ments, and R&D for the en­ergy up­grade.
 
slides icon Slides MOIAA01 [7.037 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOIAA01  
About • Received ※ 20 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 03 July 2023 — Issue date ※ 19 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB069 Design and Tests of a Cathode Stalk for the LCLS-II-HE Low Emittance Injector SRF Gun 589
 
  • T.K. Konomi, W. Hartung, S.H. Kim, S.J. Miller, D.G. Morris, K. Saito, A.T. Taylor, T. Xu, Z.Y. Yin
    FRIB, East Lansing, Michigan, USA
  • C. Adolphsen, J. Smedley, L. Xiao
    SLAC, Menlo Park, California, USA
  • S. Gatzmaga, P. Murcek, R. Xiang
    HZDR, Dresden, Germany
  • M.P. Kelly, T.B. Petersen
    ANL, Lemont, Illinois, USA
  • J.W. Lewellen
    LANL, Los Alamos, New Mexico, USA
 
  A SRF gun can op­er­ate CW with a high gra­di­ent and ul­tra-low vac­uum for high-quan­tum ef­fi­ciency, low MTE pho­to­cath­odes, use­ful fea­tures for de­liv­ery of high-bright­ness, high-rep­e­ti­tion-rate beams. For these rea­sons, an SRF gun based pho­toin­jec­tor was cho­sen for a pro­posed Low Emit­tance In­jec­tor ad­di­tion to the LCLS-II-HE fa­cil­ity, which will op­er­ate CW with bunch rates up to 1 MHz. For this in­jec­tor, a pro­to­type 185.7 MHz QWR gun is being de­vel­oped in a col­lab­o­ra­tive ef­fort among FRIB, HZDR, ANL and SLAC, with the goal of achiev­ing a pho­to­cath­ode gra­di­ent of at least 30 MV/m. The pho­to­cath­ode is held by a coax­ial fix­ture (cath­ode stalk) for ther­mal iso­la­tion from the cav­ity body. The sys­tem must allow for pre­cise align­ment of the pho­to­cath­ode, par­ti­cle-free pho­to­cath­ode ex­change, cryo­genic (55-70 K) or warm (273-300 K) pho­to­cath­ode op­er­at­ing tem­per­a­tures, and DC bi­as­ing to in­hibit mul­ti­pact­ing. A pro­to­type cath­ode stalk has been built and bench tests are un­der­way to val­i­date the de­sign. Mea­sure­ments in­clude RF power dis­si­pa­tion, DC bias hold-off, mul­ti­pact­ing sup­pres­sion and heat trans­fer ef­fec­tive­ness. This paper de­scribes the cath­ode stalk de­sign and the test re­sults.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB069  
About • Received ※ 03 July 2023 — Revised ※ 27 July 2023 — Accepted ※ 19 August 2023 — Issue date ※ 20 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRIBA07 Status of the SLAC/MSU SRF Gun Development Project 1003
 
  • S.J. Miller, Y. Al-Mahmoud, W. Chang, Y. Choi, C. Compton, X.J. Du, K. Elliott, W. Hartung, J.D. Hulbert, S.H. Kim, T. Konomi, D.G. Morris, M.S. Patil, L. Popielarski, K. Saito, A. Taylor, B.P. Tousignant, J. Wei, J.D. Wenstrom, K. Witgen, T. Xu
    FRIB, East Lansing, Michigan, USA
  • C. Adolphsen, R. Coy, F. Ji, M.J. Murphy, J. Smedley, L. Xiao
    SLAC, Menlo Park, California, USA
  • A. Arnold, S. Gatzmaga, P. Murcek, J. Teichert, R. Xiang
    HZDR, Dresden, Germany
  • M.P. Kelly, T.B. Petersen, P. Piot
    ANL, Lemont, Illinois, USA
  • J.W. Lewellen
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the Department of Energy under Contract DE-AC02-76SF00515
The Linac Co­her­ent Light Source II High En­ergy (LCLS-II-HE) Pro­ject at SLAC in­cludes the con­struc­tion of a low-emit­tance in­jec­tor (LEI) and a su­per­con­duct­ing quar­ter-wave res­onator (QWR) at 185.7 MHz. Sev­eral al­ter­na­tives to a su­per­con­duct­ing radio fre­quency (SRF) QWR gun were con­sid­ered for the LEI, in­clud­ing nor-mal-con­duct­ing RF guns evolved from the LCLS-II gun de­sign. Com­pared to nor­mal-con­duct­ing de­signs, the com­bi­na­tion of an in­trin­si­cally out­stand­ing vac­uum en­vi­ron­ment (for cath­ode life­time), and the po­ten­tial for a larger ul­ti­mate per­for­mance en­ve­lope, led to the deci-sion to pur­sue de­vel­op­ment of the QWR-SRF gun. A pro­to­type gun is cur­rently being de­signed and fab­ri­cated at the Fa­cil­ity for Rare Iso­tope Beams (FRIB) at Michi-gan State Uni­ver­sity (MSU). This paper pre­sents per­for-mance goals for the new gun de­sign, an overview of the pro­to­type de­vel­op­ment ef­fort, sta­tus, and fu­ture plans in­clud­ing fab­ri­ca­tion.
 
slides icon Slides FRIBA07 [9.655 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-FRIBA07  
About • Received ※ 15 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 11 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)