Author: Smith, K.S.
Paper Title Page
MOPMB078 Design and Prototyping of the Electron Ion Collider Electron Storage Ring SRF Cavity 293
 
  • J. Guo, E.F. Daly, E. Drachuk, R.R. Fernandes, J. Henry, J. Matalevich, G.-T. Park, R.A. Rimmer, D. Savransky
    JLab, Newport News, Virginia, USA
  • D. Holmes, K.S. Smith, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177
Among the EIC¿s numerous RF subsystems, the electron storage ring¿s (ESR) 591 MHz fundamental RF system is one of the most challenging. Each cavity in the system will handle up to 2.5 A of beam current and supply up to 600 kW beam power under a wide range of voltage. The EIC R&D plan includes the design, fabrication and testing of such a cavity. In this paper, we will report the latest status and findings of the ongoing design and prototyping of this cavity, including the RF and mechanical/thermal design, fabrication design, and the progress of fabrication.
 
poster icon Poster MOPMB078 [1.489 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB078  
About • Received ※ 12 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 19 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB089 Theoretical Model of External Q Tuning for an SRF Cavity with Waveguide Tuner 794
 
  • W. Xu, Z.A. Conway, K.S. Smith, A. Zaltsman
    BNL, Upton, New York, USA
  • E.F. Daly, J. Guo, R.A. Rimmer
    JLab, Newport News, Virginia, USA
 
  Funding: The work is supported by by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
A wide range of electron beam energies (5 ¿ 18 GeV) and beam currents (0.2 ¿ 2.5 A) in EIC Electron Storage Ring (ESR) operating scenarios requires a capability of adjusting coupling factor up to a factor of 20 for the 591 MHz Superconducting Radio Frequency (SRF) cavities, which contains two fundamental power couplers (FPC) delivering continuous wave (CW) 800 kW RF power to the beam. Currently, adjusting external Q of a SRF cavity is done by varying protrusion of FPC¿s inner conductor in beam pipe or using three stub tuner to adjust external Q value, which either has limit on tuning range or limit on operating power. This paper presents a method of tuning the FPC external Q by a multiple-waveguide tuner, which allows for high power, wide tuning range operations. The theoretical model of matching beam impedance with waveguide tuner and detailed matching conditions and limits will be presented. Follow the theoretical model, a preliminary design of a 3D waveguide tuner will be presented.
The work is supported by by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
 
poster icon Poster WEPWB089 [1.269 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB089  
About • Received ※ 26 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 19 August 2023 — Issue date ※ 22 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCAA02
EIC Project Overview and Related SRF Technologies  
 
  • E.F. Daly, J. Guo, R.A. Rimmer
    JLab, Newport News, Virginia, USA
  • Z.A. Conway, D. Holmes, Q. Wu, B.P. Xiao, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
  • S.U. De Silva, J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • K.S. Smith
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: This is authored by Jefferson Science Associate, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.
The Electron-Ion Collider (EIC), with a range of center-of-mass energies from 20 to 140 GeV, will enable experimental nuclear physics in the gluon-dominated regime with luminosity up to 1034 cm2 per second. The project chose to employ SRF technology for several accelerating and crab cavity geometries used throughout the accelerator complex to achieve the EIC¿s energy and luminosity goals. This presentation will review the current status of the EIC, the SRF technology used in the accelerator complex and current status of SRF R&D. The discussion will share EIC’s fundamental high-power coupler design & performance, high-power HOM power handling hardware, SRF elliptical and crab cavity designs and recent experimental results.
 
slides icon Slides TUCAA02 [3.784 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)