Paper | Title | Page |
---|---|---|
MOPMB019 | Numerical Calculations of Superheating Field in Superconductors with Nanostructured Surfaces | 114 |
|
||
Funding: This work was supported by DOE under Grant DE-SC 100387-020 and by Virginia Military Institute (VMI) under Jackson-Hope Grant for faculty travel and for New Directions in Teaching and Research Grants. We report calculations of a dc superheating field Hs in superconductors with nanostructured surfaces. Particularly, we performed numerical simulations of the Ginzburg-Landau (GL) equations for a superconductor with an inhomogeneous profile of impurity concentration, a thin superconducting layer on top of another superconductor, and S-I-S multilayers. The superheating field was calculated taking into account the instability of the Meissner state at a finite wavelength along the surface depending on the value of the GL parameter. Simulations were done for the materials parameters of Nb and Nb₃Sn at different values of the GL parameter and the mean free paths. We show that the impurity concentration profile at the surface and thicknesses of superconducting layers in S-I-S structures can be optimized to reach the maximum Hs, which exceeds the bulk superheating fields of both Nb and Nb₃Sn. For example, a S-I-S structure with 90 nm thick Nb₃Sn layer on Nb can boost the superheating field up to ~ 500 mT, while protecting the SRF cavity from dendritic thermomagnetic avalanches caused by local penetration of vortices. |
||
Poster MOPMB019 [1.214 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB019 | |
About • | Received ※ 17 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 16 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |