Paper | Title | Page |
---|---|---|
MOIXA03 | Proton Power Upgrade Project Progress and Plans at the Spallation Neutron Source in Oak Ridge Tennessee | 25 |
|
||
Funding: Work Supported by UT-Battelle, LLC, under contract DE-AC05-00OR22725 The Proton Power Upgrade project is well underway at the Spallation Neutron Source (SNS) facility in Oak Ridge, Tennessee. This project aims at increasing the proton beam power capability from 1.4 to 2.8 MW, by adding linac energy, increasing the beam current and implementing target developments to handle the increased beam power. This talk will cover the current status of increasing the beam energy, issues encountered along the way, operational experience with the new SRF cryomodules and target improvements and results from operation with beam so far. |
||
Slides MOIXA03 [3.327 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOIXA03 | |
About • | Received ※ 09 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 08 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMB041 | Microstructure Development in a Cold Worked SRF Niobium Sheet After Heat Treatments | 191 |
|
||
Funding: Jefferson Science Associates, LLC under U.S. DOE Grant DEAC05-06OR23177, U.S. DOE, Office of HEP under Grant DE-SC0009960, and NHMFL through NSF Grant DMR-1644779 and the State of Florida. Bulk Nb for TESLA shaped SRF cavities is a mature technology. Significant advances are in order to push Q0’s to 1010-11(T= 2K), and involve modifications to the sub-surface Nb layers by impurity doping. In order to achieve the lowest surface resistance any trapped flux needs to be expelled for cavities to reach high Q0’s. There is clear evidence that cavities fabricated from polycrystalline sheets meeting current specifications require higher temperatures beyond 800 °C leads to better flux expulsion, and hence improves Q0. Recently, cavities fabricated with a non-traditional Nb sheet with initial cold work due to cold rolling expelled flux better after 800 °C/3h heat treatment than cavities fabricated using fine-grain poly-crystalline Nb sheets. Here, we analyze the microstructure development in Nb from the vendor supplied cold work non- annealed sheet that was fabricated into an SRF cavity as a function of heat treatment building upon the methodology development to analyze microstructure being developed by the FSU-MSU-UT, Austin-JLAB collaboration. The results indicate correlation between full recrystallization and better flux expulsion. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB041 | |
About • | Received ※ 19 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 09 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMB042 | Evaluation of Flux Expulsion and Flux Trapping Sensitivity of SRF Cavities Fabricated from Cold Work Nb Sheet with Successive Heat Treatment | 197 |
SUSPB015 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: The work is partially supported by DOE HEP under Awards No. DE-SC 0009960. This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The main source of RF losses leading to lower quality factor of superconducting radio-frequency cavities is due to the residual magnetic flux trapped during cool-down. The loss due to flux trapping is more pronounced for cavities subjected to impurities doping. The flux trapping and its sensitivity to rf losses are related to several intrinsic and extrinsic phenomena. To elucidate the effect of re-crystallization by high temperature heat treatment on the flux trapping sensitivity, we have fabricated two 1.3 GHz single cell cavities from cold-worked Nb sheets and compared with cavities made from standard fine-grain Nb. Flux expulsion ratio and flux trapping sensitivity were measured after successive high temperature heat treatments. The cavity made from cold worked Nb showed better flux expulsion after 800 C/3h heat treatment and similar behavior when heat treated with additional 900 C/3h and 1000 C/3h. In this contribution, we present the summary of flux expulsion, trapping sensitivity, and RF results. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB042 | |
About • | Received ※ 19 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 25 June 2023 — Issue date ※ 04 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMB045 | Quench Detection in a Superconducting Radio Frequency Cavity with Combined Temperature and Magnetic Field Mapping | 211 |
SUSPB016 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 Local dissipation of rf power in SRF cavities create so called ’hot-spots’, primary precursors of cavity quench driven by either thermal or magnetic instability. These hot spots are may be detected by a temperature mapping system, and a large increase in temperature on the outer surface is detected during cavity quench events. Here, we have used combined magnetic and temperature mapping systems using anisotropic magneto-resistance sensors and carbon resisters to locate the hot spots and areas with high trapped flux on a 3 GHz single-cell Nb cavity during the rf tests at 2 K. The effect of global and localized flux trapping on the rf performance will be presented. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB045 | |
About • | Received ※ 19 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 12 August 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUIXA01 |
Understanding the Field and Frequency Dependence of Rf Loss in SRF Cavities | |
|
||
Funding: This is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05- 06OR23177. SRF cavities subjected to heat treatment below 200 °C in the presence of nitrogen showed an improvement in quality factor while maintaining an accelerating gradient above 25 MV/m. Here, we report the rf performance of several single-cell superconducting radio frequency cavities with frequency ranging from 0.75 - 3.0 GHz subjected to low temperature heat treatment in nitrogen environment. The cavities were treated at temperature 120 - 175 oC for 24 - 48 hours in low partial pressure of ultra-pure nitrogen gas. The improvement in Q₀ with Q-rise was observed when nitrogen gas was injected ~300 °C during the furnace treatment. The surface modification was confirmed by the change in electronic mean free path and near surface elemental analysis by SIMS. The field dependence of the rf losses is strongly correlated to the cavity frequency. The analysis of experimental data with available theoretical models as well as comparison with similar study on high temperature nitrogen doped cavities will be presented. |
||
Slides TUIXA01 [4.416 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB049 | Multipacting in C75 Cavities | 674 |
|
||
Funding: This work was supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Cavities for the C75 cryomodule refurbishment program are currently being built, processed, tested and installed in the CEBAF accelerator at Jefferson Lab. They consist of 5-cell, 1497 MHz cavities with waveguide-type power coupler and for higher-order modes. Most of the cavities rf tests in a vertical cryostat at 2.07 K were limited by strong multipacting at accelerating gradients in the range 18 - 23 MV/m. A softer multipacting barrier was sometimes found at 13 - 15 MV/m. An unusual feature of the multipacting was that the barrier often shifted to a lower gradient ~17 MV/m, after multiple quenches at ~20 MV/m. This phenomenon was reproduced in a single-cell cavity of the same shape. The cavity was tested after different amounts of mechanical tuning and residual magnetic field, with no significant impact to the multipacting behavior. This contribution summarizes the experimental results from cavity rf tests, some of which were complemented by additional diagnostic instrumentation. Results from 2D and 3D simulations are also presented, indicating favorable conditions for multipacting at the equator in the range 20 - 29 MV/m. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB049 | |
About • | Received ※ 15 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 01 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB052 | Temperature, RF Field, and Frequency Dependence Performance Evaluation of Superconducting Niobium Half-Wave Coaxial Cavity | 691 |
|
||
Funding: This is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05- 06OR23177 Recent advancement in superconducting radio frequency cavity processing techniques, with diffusion of impurities within the RF penetration depth, resulted in high quality factor with increase in quality factor with increasing accelerating gradient. The increase in quality factor is the result of a decrease in the surface resistance as a result of nonmagnetic impurities doping and change in electronic density of states. The fundamental understanding of the dependence of surface resistance on frequency and surface preparation is still an active area of research. Here, we present the result of RF measurements of the TEM modes in a coaxial half-wave niobium cavity resonating at frequencies between 0.3 - 1.3 GHz. The temperature dependence of the surface resistance was measured between 4.2 K and 1.6 K. The field dependence of the surface resistance was measured at 2.0 K. The baseline measurements were made after standard surface preparation by buffered chemical polishing. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB052 | |
About • | Received ※ 18 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 20 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB053 | Simulation of the Dynamics of Gas Mixtures during Plasma Processing in the C75 Cavity | 696 |
|
||
Funding: The work is supported by SC Nuclear Physics Program through DOE SC Lab funding announcement DE-FOA-0002670 & is authored by JSA, LLC under U.S. DOE Contract No. DE-AC05- 06OR23177 Plasma processing using a mixture of noble gas and oxygen is a technique that is currently being used to reduce field emission and multipacting in accelerating cavities. Plasma is created inside the cavity when the gas mixture is exposed to an electromagnetic field that is generated by applying RF power through the fundamental power or higher-order mode couplers. Oxygen ions and atomic oxygen are created in the plasma which breaks down the hydrocarbons on the surface of the cavity and the residuals from this process are removed as part of the process gas flow. Removal of hydrocarbons from the surface increases the work function and reduces the secondary emission coefficient. This work describes the initial results of plasma simulation, which provides insight into the ignition process, distribution of different species, and interactions of free oxygen and oxygen ions with the cavity surfaces. The simulations have been done with an Ar/¿2 plasma using COMSOL® multiphysics. These simulations help in understanding the dynamics and control of plasma inside the cavity and the exploration of different gas mixtures. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB053 | |
About • | Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 29 June 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB125 | Thermodynamic Properties of Srf Niobium | 884 |
|
||
Funding: This is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05- 06OR23177. Bulk and thin films of niobium are the materials of choice in fabricating superconducting radio frequency (SRF) cavities for modern particle accelerators and quantum computing applications. The thermodynamic properties of Nb are of particular interest in heat management in cryogenic environments. Here, we report the results of measurements of the thermodynamic properties of niobium used in the fabrication of superconducting radio frequency (SRF) cavities. The temperature and magnetic field dependence of thermal conductivity, Seebeck coefficient, and specific heat capacity was measured on bulk niobium samples. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB125 | |
About • | Received ※ 11 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 04 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THIXA04 |
Development of a Prototype Superconducting Radio-Frequency Cavity for Conduction-Cooled Accelerators | |
|
||
Funding: Work supported by the U.S. DOE, ARDAP Office, under contract No. DE-AC05-06OR23177. SB¿s microscopy work at the NHMFL was partly supported by the U.S. DOE, HEP Office under Award No. DE-SC0009960. Recent progress in the development of high-quality Nb₃Sn film coatings along with the availability of cryocoolers with high cooling capacity at 4 K makes it feasible to operate SRF cavities cooled by thermal conduction at relevant accelerating gradients for use in accelerators. We have developed a prototype single-cell cavity to prove the feasibility of operation up to the accelerating gradient required for 1 MeV energy gain, cooled by conduction with cryocoolers. The cavity has a ~3 ¿m thick Nb₃Sn film on the inner surface, deposited on a ~4 mm thick bulk Nb substrate and a bulk ~7 mm thick Cu outer shell with three Cu attachment tabs. The cavity was tested up to a peak surface magnetic field of 53 mT in liquid He at 4.3 K. A horizontal test cryostat was designed and built to test the cavity cooled with three cryocoolers. The rf tests of the conduction-cooled cavity achieved a peak surface magnetic field of 50 mT and stable operation was possible with up to 18.5 W of rf heat load. The peak frequency shift due to microphonics was 23 Hz. These results represent the highest peak surface magnetic field achieved in a conduction-cooled SRF cavity to date |
||
Slides THIXA04 [3.906 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |