Author: Gurevich, A.V.
Paper Title Page
MOPMB019 Numerical Calculations of Superheating Field in Superconductors with Nanostructured Surfaces 114
 
  • M.R.P. Walive Pathiranage
    VMI, Lexington, USA
  • A.V. Gurevich
    ODU, Norfolk, Virginia, USA
 
  Funding: This work was supported by DOE under Grant DE-SC 100387-020 and by Virginia Military Institute (VMI) under Jackson-Hope Grant for faculty travel and for New Directions in Teaching and Research Grants.
We report calculations of a dc superheating field Hs in superconductors with nanostructured surfaces. Particularly, we performed numerical simulations of the Ginzburg-Landau (GL) equations for a superconductor with an inhomogeneous profile of impurity concentration, a thin superconducting layer on top of another superconductor, and S-I-S multilayers. The superheating field was calculated taking into account the instability of the Meissner state at a finite wavelength along the surface depending on the value of the GL parameter. Simulations were done for the materials parameters of Nb and Nb₃Sn at different values of the GL parameter and the mean free paths. We show that the impurity concentration profile at the surface and thicknesses of superconducting layers in S-I-S structures can be optimized to reach the maximum Hs, which exceeds the bulk superheating fields of both Nb and Nb₃Sn. For example, a S-I-S structure with 90 nm thick Nb₃Sn layer on Nb can boost the superheating field up to ~ 500 mT, while protecting the SRF cavity from dendritic thermomagnetic avalanches caused by local penetration of vortices.
 
poster icon Poster MOPMB019 [1.214 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB019  
About • Received ※ 17 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 16 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB036 Magnetic Field Mapping of a Large-Grain 1.3 GHz Single-Cell Cavity 172
 
  • I.P. Parajuli, J.R. Delayen, A.V. Gurevich
    ODU, Norfolk, Virginia, USA
  • G. Ciovati
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the National Science Foundation under Grant No. PHY 100614-010. G.C. is supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
A new magnetic field mapping system for 1.3 GHz single-cell cavities was developed in order to reveal the impact of ambient magnetic field and temperature gradients during cool-down on the flux trapping phenomenon. Measurements were done at 2 K for different cool-down conditions of a large-grain cavity before and after 120 °C bake. The fraction of applied magnetic field trapped in the cavity walls was ~ 50% after slow cool-down and ~20% after fast cool-down. The results showed a weak correlation between between trapped flux locations and hot-spots causing the high-field Q-slope. The results also showed an increase of the trapped flux at the quench location, after quenching, and a local redistribution of trapped flux with increasing RF field.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB036  
About • Received ※ 15 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 05 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB043 Characterization of Dissipative Regions of an N-Doped SRF Cavity 202
 
  • E.M. Lechner, G. Ciovati
    JLab, Newport News, Virginia, USA
  • G. Ciovati, A.V. Gurevich, J. Makita
    ODU, Norfolk, Virginia, USA
  • M. Iavarone, E.M. Lechner, B.D. Oli
    Temple University, Philadelphia, USA
 
  Funding: DE-AC05-06OR23177 NSF Award No. 1734075 W911NF-16-2-0189
We report scanning tunneling microscopy measurements on N-doped cavity hot and cold spot cutouts. Analysis of the electron tunneling spectra using a proximity effect theory shows that hot spots have a reduced superconducting gap and a wider distribution of the contact resistance. Alone, these degraded superconducting properties account for a much weaker excess dissipation as compared with the vortex contribution. Based on the correlation between the quasiparticle density of states and temperature mapping, we suggest that degraded superconducting properties may facilitate vortex nucleation or settling of trapped flux during cooling the cavity through the critical temperature.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB043  
About • Received ※ 19 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 13 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB083 Investigation of the Multilayer Shielding Effect through NbTiN-AlN Coated Bulk Niobium 311
SUSPB025   use link to see paper's listing under its alternate paper code  
 
  • I.H. Senevirathne, J.R. Delayen, A.V. Gurevich
    ODU, Norfolk, Virginia, USA
  • D.R. Beverstock, J.R. Delayen, A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
  • D.R. Beverstock
    The College of William and Mary, Williamsburg, Virginia, USA
 
  We report measurements of the dc field onset Bp of magnetic flux penetration through NbTiN-AlN coating on bulk niobium using the Hall probe experimental setup. The measurements of Bp reveal the multilayer shielding effect on bulk niobium under high magnetic fields at cryogenic temperatures. We observed a significant enhancement in Bp for the NbTiN-AlN coated Nb samples as compared to bare Nb samples. The observed dependence of Bp on the coating thickness is consistent with theoretical predictions.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB083  
About • Received ※ 18 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 12 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIXA01
Understanding the Field and Frequency Dependence of Rf Loss in SRF Cavities  
 
  • P. Dhakal, G. Ciovati
    JLab, Newport News, Virginia, USA
  • G. Ciovati, A.V. Gurevich, B.D. Khanal
    ODU, Norfolk, Virginia, USA
 
  Funding: This is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05- 06OR23177.
SRF cavities subjected to heat treatment below 200 °C in the presence of nitrogen showed an improvement in quality factor while maintaining an accelerating gradient above 25 MV/m. Here, we report the rf performance of several single-cell superconducting radio frequency cavities with frequency ranging from 0.75 - 3.0 GHz subjected to low temperature heat treatment in nitrogen environment. The cavities were treated at temperature 120 - 175 oC for 24 - 48 hours in low partial pressure of ultra-pure nitrogen gas. The improvement in Q₀ with Q-rise was observed when nitrogen gas was injected ~300 °C during the furnace treatment. The surface modification was confirmed by the change in electronic mean free path and near surface elemental analysis by SIMS. The field dependence of the rf losses is strongly correlated to the cavity frequency. The analysis of experimental data with available theoretical models as well as comparison with similar study on high temperature nitrogen doped cavities will be presented.
 
slides icon Slides TUIXA01 [4.416 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THIXA04
Development of a Prototype Superconducting Radio-Frequency Cavity for Conduction-Cooled Accelerators  
 
  • G. Ciovati, S. Balachandran, G. Cheng, E.F. Daly, P. Dhakal, K.A. Harding, F. Marhauser, T. Powers, U. Pudasaini, R.A. Rimmer, H. Vennekate
    JLab, Newport News, VA, USA
  • J.P. Anderson, B.R.L. Coriton, L.D. Holland, K.R. McLaughlin, D.A. Packard, D.M. Vollmer
    GA, San Diego, California, USA
  • A.V. Gurevich
    ODU, Norfolk, Virginia, USA
  • J. Rathke
    TechSource, Los Alamos, New Mexico, USA
  • T. Schultheiss
    TJS Technologies, Commack, New York, USA
 
  Funding: Work supported by the U.S. DOE, ARDAP Office, under contract No. DE-AC05-06OR23177. SB¿s microscopy work at the NHMFL was partly supported by the U.S. DOE, HEP Office under Award No. DE-SC0009960.
Recent progress in the development of high-quality Nb₃Sn film coatings along with the availability of cryocoolers with high cooling capacity at 4 K makes it feasible to operate SRF cavities cooled by thermal conduction at relevant accelerating gradients for use in accelerators. We have developed a prototype single-cell cavity to prove the feasibility of operation up to the accelerating gradient required for 1 MeV energy gain, cooled by conduction with cryocoolers. The cavity has a ~3 ¿m thick Nb₃Sn film on the inner surface, deposited on a ~4 mm thick bulk Nb substrate and a bulk ~7 mm thick Cu outer shell with three Cu attachment tabs. The cavity was tested up to a peak surface magnetic field of 53 mT in liquid He at 4.3 K. A horizontal test cryostat was designed and built to test the cavity cooled with three cryocoolers. The rf tests of the conduction-cooled cavity achieved a peak surface magnetic field of 50 mT and stable operation was possible with up to 18.5 W of rf heat load. The peak frequency shift due to microphonics was 23 Hz. These results represent the highest peak surface magnetic field achieved in a conduction-cooled SRF cavity to date
 
slides icon Slides THIXA04 [3.906 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)