Author: Rimmer, R.A.
Paper Title Page
MOPMB078 Design and Prototyping of the Electron Ion Collider Electron Storage Ring SRF Cavity 293
 
  • J. Guo, E.F. Daly, E. Drachuk, R.R. Fernandes, J. Henry, J. Matalevich, G.-T. Park, R.A. Rimmer, D. Savransky
    JLab, Newport News, Virginia, USA
  • D. Holmes, K.S. Smith, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177
Among the EIC¿s nu­mer­ous RF sub­sys­tems, the elec­tron stor­age ring¿s (ESR) 591 MHz fun­da­men­tal RF sys­tem is one of the most chal­leng­ing. Each cav­ity in the sys­tem will han­dle up to 2.5 A of beam cur­rent and sup­ply up to 600 kW beam power under a wide range of volt­age. The EIC R&D plan in­cludes the de­sign, fab­ri­ca­tion and test­ing of such a cav­ity. In this paper, we will re­port the lat­est sta­tus and find­ings of the on­go­ing de­sign and pro­to­typ­ing of this cav­ity, in­clud­ing the RF and me­chan­i­cal/ther­mal de­sign, fab­ri­ca­tion de­sign, and the progress of fab­ri­ca­tion.
 
poster icon Poster MOPMB078 [1.489 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB078  
About • Received ※ 12 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 19 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCAA02
EIC Project Overview and Related SRF Technologies  
 
  • E.F. Daly, J. Guo, R.A. Rimmer
    JLab, Newport News, Virginia, USA
  • Z.A. Conway, D. Holmes, Q. Wu, B.P. Xiao, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
  • S.U. De Silva, J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • K.S. Smith
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: This is authored by Jefferson Science Associate, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.
The Elec­tron-Ion Col­lider (EIC), with a range of cen­ter-of-mass en­er­gies from 20 to 140 GeV, will en­able ex­per­i­men­tal nu­clear physics in the gluon-dom­i­nated regime with lu­mi­nos­ity up to 1034 cm2 per sec­ond. The pro­ject chose to em­ploy SRF tech­nol­ogy for sev­eral ac­cel­er­at­ing and crab cav­ity geome­tries used through­out the ac­cel­er­a­tor com­plex to achieve the EIC¿s en­ergy and lu­mi­nos­ity goals. This pre­sen­ta­tion will re­view the cur­rent sta­tus of the EIC, the SRF tech­nol­ogy used in the ac­cel­er­a­tor com­plex and cur­rent sta­tus of SRF R&D. The dis­cus­sion will share EIC’s fun­da­men­tal high-power cou­pler de­sign & per­for­mance, high-power HOM power han­dling hard­ware, SRF el­lip­ti­cal and crab cav­ity de­signs and re­cent ex­per­i­men­tal re­sults.
 
slides icon Slides TUCAA02 [3.784 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB010 Preservation of the High Quality Factor and Accelerating Gradient of Nb₃Sn-Coated Cavity During Pair Assembly 405
 
  • G.V. Eremeev, S. Cheban, S. Posen, B. Tennis
    Fermilab, Batavia, Illinois, USA
  • J.F. Fischer, D. Forehand, U. Pudasaini, A.V. Reilly, R.A. Rimmer
    JLab, Newport News, Virginia, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Two CEBAF 5-cell ac­cel­er­a­tor cav­i­ties have been coated with Nb₃Sn film using the vapor dif­fu­sion tech­nique. One cav­ity was coated in the Jef­fer­son Lab Nb₃Sn cav­ity coat­ing sys­tem, and the other in the Fer­mi­lab Nb₃Sn coat­ing sys­tem. Both cav­i­ties were mea­sured at 4 K and 2 K in the ver­ti­cal dewar test in each lab and then as­sem­bled into a cav­ity pair at Jef­fer­son Lab. Pre­vi­ous at­tempts to as­sem­ble Nb₃Sn cav­i­ties into a cav­ity pair de­graded the su­per­con­duct­ing prop­er­ties of Nb₃Sn-coated cav­i­ties. This con­tri­bu­tion dis­cusses the ef­forts to iden­tify and mit­i­gate the pair as­sem­bly chal­lenges and will pre­sent the re­sults of the ver­ti­cal tests be­fore and after pair as­sem­bly. No­tably, one of the cav­i­ties reached the high­est gra­di­ent above 80 mT in the ver­ti­cal test after the pair as­sem­bly.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB010  
About • Received ※ 23 June 2023 — Revised ※ 28 June 2023 — Accepted ※ 02 July 2023 — Issue date ※ 09 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB033 On the Way to a 10 MeV, Conduction-Cooled, Compact SRF Accelerator 471
 
  • H. Vennekate, G. Cheng, G. Ciovati, J. Guo, K.A. Harding, J. Henry, U. Pudasaini, R.A. Rimmer
    JLab, Newport News, Virginia, USA
  • A. Castilla
    JLAB, Newport News, USA
  • F.E. Hannon
    Phase Space Tech, Bjärred, Sweden
  • D.A. Packard
    GA, San Diego, California, USA
  • J. Rathke
    TechSource, Los Alamos, New Mexico, USA
  • T. Schultheiss
    TJS Technologies, Commack, New York, USA
 
  Funding: The presentation has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
After the suc­cess of de­sign­ing a com­pact 1 MeV, 1 MW ac­cel­er­a­tor based on con­duc­tion-cooled SRF, Jef­fer­son Lab is now pur­su­ing a con­cept to pro­vide a ten­fold in­crease of the beam en­ergy. The higher en­ergy sig­nif­i­cantly ex­tends the range of ap­pli­ca­tions for en­vi­ron­men­tal re­me­di­a­tion and in­dus­try in gen­eral. The ob­vi­ous chal­lenge for SRF is to move from a sin­gle-cell to a mul­ti­cell cav­ity while main­tain­ing high ef­fi­ciency and the abil­ity to op­er­ate the ma­chine with­out a com­plex cryo­genic plant. The con­tri­bu­tion pre­sents the lat­est re­sults of this de­sign study with re­spect to its cen­ter­piece, a Nb₃Sn coated 915 MHz five-cell cav­ity and its cor­re­spond­ing RF com­po­nents, i.e. FPC and HOM ab­sorber, as well as the con­duc­tion-cool­ing con­cept based on com­mer­cially avail­able cry­ocool­ers.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB033  
About • Received ※ 19 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 18 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB068 EIC 197 MHz Crab Cavity RF Optimization 584
 
  • Z. Li
    SLAC, Menlo Park, California, USA
  • S.U. De Silva, J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • R.A. Rimmer
    JLab, Newport News, Virginia, USA
  • Q. Wu, B.P. Xiao, W. Xu
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under U.S. DOE K No. DE-SC0012704, by Jefferson Science Associates, LLC under U.S. DOE K No. DE-SC0002769, and by DOE K No. DE-AC02-76SF00515.
Crab cav­i­ties, op­er­at­ing at 197 MHz and 394 MHz re­spec­tively, will be used to com­pen­sate the loss of lu­mi­nos­ity due to a 25 mrad cross­ing angle at the in­ter­ac­tion point in the Elec­tron Ion Col­lider (EIC). Both crab cav­i­ties are of the RF Di­pole (RFD) shape. To meet the ma­chine de­sign re­quire­ments, there are a few im­por­tant cav­ity de­sign con­sid­er­a­tions that need to be ad­dressed. First, to achieve sta­ble cav­ity op­er­a­tion at the de­sign volt­ages, cav­ity geom­e­try de­tails must be op­ti­mized to sup­press po­ten­tial mul­ti­pact­ing. In­cor­po­rat­ing strong HOM damp­ing in the cav­ity de­sign is re­quired for the beam sta­bil­ity and qual­ity. Fur­ther­more, due to the fi­nite pole width, the mul­ti­pole fields, es­pe­cially the sex­tu­pole and the de­ca­pole terms, need to be min­i­mized to main­tain an ac­cept­able beam dy­namic aper­ture. This paper will pre­sent the RF op­ti­miza­tion de­tails of the 197 MHz cav­ity.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB068  
About • Received ※ 16 June 2023 — Revised ※ 29 June 2023 — Accepted ※ 03 July 2023 — Issue date ※ 08 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB047 Higher Order Mode Analysis of a 915 MHz 2-Cell Cavity for a Prototype Industrial Accelerator 667
 
  • A. Castilla
    JLAB, Newport News, USA
  • G. Ciovati, J. Guo, G.-T. Park, R.A. Rimmer, H. Vennekate
    JLab, Newport News, VA, USA
 
  A pos­si­ble so­lu­tion to re­duce the com­plex­ity posed by the cryo­genic sys­tems in a su­per­con­duct­ing RF ac­cel­er­a­tor for in­dus­trial ap­pli­ca­tions, is to cap­i­tal­ize on the ad­vances achieved by the Nb₃Sn su­per­con­duct­ing RF tech­nol­ogy, as well as the fea­si­bil­ity of a re­li­able 4 K cool­ing sys­tem, based on com­mer­cial cry­ocool­ers. Fol­low­ing this phi­los­o­phy, the con­cep­tual de­sign for a pro­to­type, con­duc­tion-cooled, 4 MeV, 20 kW SRF elec­tron linac, is being de­vel­oped at Jef­fer­son Lab. Such de­sign is based on a 915 MHz two-cell Nb₃Sn cav­ity. In this con­tri­bu­tion, we pre­sent the pro­posed cav­ity de­sign, in­clud­ing the fun­da­men­tal power cou­pler, and the pre­lim­i­nary analy­sis of the Higher Order Modes, using nu­mer­i­cal sim­u­la­tions to es­ti­mate the po­ten­tially dan­ger­ous modes as a start­ing point to eval­u­ate the re­quire­ments for damp­ing for re­li­able op­er­a­tions with a cry­ocooler. Fi­nally, dif­fer­ent meth­ods to cal­cu­late the Higher Order Modes’ Im­ped­ances are briefly dis­cussed.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB047  
About • Received ※ 25 June 2023 — Revised ※ 29 June 2023 — Accepted ※ 04 July 2023 — Issue date ※ 16 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB049 Multipacting in C75 Cavities 674
 
  • G. Ciovati, P. Dhakal, R.A. Rimmer, H. Wang, S. Wang
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Cav­i­ties for the C75 cry­omod­ule re­fur­bish­ment pro­gram are cur­rently being built, processed, tested and in­stalled in the CEBAF ac­cel­er­a­tor at Jef­fer­son Lab. They con­sist of 5-cell, 1497 MHz cav­i­ties with wave­guide-type power cou­pler and for higher-or­der modes. Most of the cav­i­ties rf tests in a ver­ti­cal cryo­stat at 2.07 K were lim­ited by strong mul­ti­pact­ing at ac­cel­er­at­ing gra­di­ents in the range 18 - 23 MV/m. A softer mul­ti­pact­ing bar­rier was some­times found at 13 - 15 MV/m. An un­usual fea­ture of the mul­ti­pact­ing was that the bar­rier often shifted to a lower gra­di­ent ~17 MV/m, after mul­ti­ple quenches at ~20 MV/m. This phe­nom­e­non was re­pro­duced in a sin­gle-cell cav­ity of the same shape. The cav­ity was tested after dif­fer­ent amounts of me­chan­i­cal tun­ing and resid­ual mag­netic field, with no sig­nif­i­cant im­pact to the mul­ti­pact­ing be­hav­ior. This con­tri­bu­tion sum­ma­rizes the ex­per­i­men­tal re­sults from cav­ity rf tests, some of which were com­ple­mented by ad­di­tional di­ag­nos­tic in­stru­men­ta­tion. Re­sults from 2D and 3D sim­u­la­tions are also pre­sented, in­di­cat­ing fa­vor­able con­di­tions for mul­ti­pact­ing at the equa­tor in the range 20 - 29 MV/m.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB049  
About • Received ※ 15 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 01 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB089 Theoretical Model of External Q Tuning for an SRF Cavity with Waveguide Tuner 794
 
  • W. Xu, Z.A. Conway, K.S. Smith, A. Zaltsman
    BNL, Upton, New York, USA
  • E.F. Daly, J. Guo, R.A. Rimmer
    JLab, Newport News, Virginia, USA
 
  Funding: The work is supported by by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
A wide range of elec­tron beam en­er­gies (5 ¿ 18 GeV) and beam cur­rents (0.2 ¿ 2.5 A) in EIC Elec­tron Stor­age Ring (ESR) op­er­at­ing sce­nar­ios re­quires a ca­pa­bil­ity of ad­just­ing cou­pling fac­tor up to a fac­tor of 20 for the 591 MHz Su­per­con­duct­ing Radio Fre­quency (SRF) cav­i­ties, which con­tains two fun­da­men­tal power cou­plers (FPC) de­liv­er­ing con­tin­u­ous wave (CW) 800 kW RF power to the beam. Cur­rently, ad­just­ing ex­ter­nal Q of a SRF cav­ity is done by vary­ing pro­tru­sion of FPC¿s inner con­duc­tor in beam pipe or using three stub tuner to ad­just ex­ter­nal Q value, which ei­ther has limit on tun­ing range or limit on op­er­at­ing power. This paper pre­sents a method of tun­ing the FPC ex­ter­nal Q by a mul­ti­ple-wave­guide tuner, which al­lows for high power, wide tun­ing range op­er­a­tions. The the­o­ret­i­cal model of match­ing beam im­ped­ance with wave­guide tuner and de­tailed match­ing con­di­tions and lim­its will be pre­sented. Fol­low the the­o­ret­i­cal model, a pre­lim­i­nary de­sign of a 3D wave­guide tuner will be pre­sented.
The work is supported by by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
 
poster icon Poster WEPWB089 [1.269 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB089  
About • Received ※ 26 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 19 August 2023 — Issue date ※ 22 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB103 Simulations and First RF Measurements of Coaxial HOM Coupler Prototypes for PERLE SRF Cavities 831
 
  • C. Barbagallo, P. Duchesne, W. Kaabi, G. Olivier, G. Olry, S. Roset, Z.F. Zomer
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • B.S. Barriere, C.S. Clement, R.L.A. Gerard, F. Gerigk, P.M. Maurin
    CERN, Meyrin, Switzerland
  • J. Henry, S.A. Overstreet, G.-T. Park, R.A. Rimmer, H. Wang
    JLab, Newport News, Virginia, USA
 
  Su­per­con­duct­ing Ra­dio-Fre­quency (SRF) linac cry­omod­ules are fore­seen for the high-cur­rent multi-turn en­ergy re­cov­ery linac PERLE (Pow­er­ful En­ergy Re­cov­ery Linac for Ex­per­i­ments). Coax­ial higher order mode (HOM) cou­plers are the pri­mary de­sign choice to ab­sorb beam-in­duced power and avoid beam in­sta­bil­i­ties. We have used 3D-printed and cop­per-coated HOM cou­plers for the pro­to­typ­ing and bench RF mea­sure­ments on the cop­per PERLE cav­i­ties. We have started a col­lab­o­ra­tion with JLab and CERN on this ef­fort. This paper pre­sents elec­tro­mag­netic sim­u­la­tions of the cav­ity HOM-damp­ing per­for­mance on those cou­plers. Bench RF mea­sure­ments of the HOMs on an 801.58 MHz 2-cell cop­per cav­ity per­formed at JLab are de­tailed. The re­sults are com­pared to eigen­mode sim­u­la­tions in CST to con­firm the de­sign. RF-ther­mal sim­u­la­tions are con­ducted to in­ves­ti­gate if the stud­ied HOM cou­plers un­dergo quench­ing.  
poster icon Poster WEPWB103 [1.533 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB103  
About • Received ※ 18 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 02 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB131 Demonstration of Magnetron as an Alternative RF Source for SRF Accelerators 902
 
  • H. Wang, K. Jordan, R.A. Rimmer
    JLab, Newport News, Virginia, USA
  • J.P. Anderson, C.P. Moeller, K.A. Thackston
    GA, San Diego, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177, and DOE OS/ARDAP Accelerator Stewardship award 2019-2023.
Mag­netron has been con­sid­ered as al­ter­nate high-ef­fi­ciency, low-cost RF sources for linacs and stor­age rings [1] for na­tional labs and in­dus­trial ap­pli­ca­tions. After the demon­stra­tion of mag­netrons power to drive and com­bine for a radio fre­quency cav­ity at 2450 MHz in CW mode, we have used trim coils adding to a wa­ter-cooled mag­netron and am­pli­tude mod­u­la­tion feed­back to fur­ther sup­press the side-band noise to -46.7 dBc level. We also demon­strated the phase-lock­ing to an in­dus­trial grade cook­ing mag­netron trans­mit­ter at 915 MHz with a 75 kW CW power de­liv­ered to a water load by using a -26.6 dBc in­jec­tion sig­nal [2]. The side­band noise from the 3-Phase SCRs DC power sup­ply can be re­duced to -16.2 dBc level. Fur­ther noise re­duc­tion and their power com­bin­ing scheme using magic-tee and cav­ity type com­bin­ers for higher power ap­pli­ca­tion (2x75kW) are to be pre­sented. We in­tent to use one power sta­tion to drive the nor­mal con­duct­ing and su­per­con­duct­ing RF cav­i­ties for the in­duc­trial linac. We also going to demon­starte a ver­ti­cal SRF cav­ity test with a high input cou­pling Q using a 2.45GHz mag­netron and com­par­ing with a base­line test re­sult using a solid state am­pli­fier.
[1]. doi:10.18429/JACoW-IPAC2015-WEPWI028.
[2]. doi:10.18429/JACoW-NAPAC2022-WEZD3.
 
poster icon Poster WEPWB131 [2.445 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB131  
About • Received ※ 16 June 2023 — Revised ※ 28 June 2023 — Accepted ※ 30 June 2023 — Issue date ※ 19 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THIXA04
Development of a Prototype Superconducting Radio-Frequency Cavity for Conduction-Cooled Accelerators  
 
  • G. Ciovati, S. Balachandran, G. Cheng, E.F. Daly, P. Dhakal, K.A. Harding, F. Marhauser, T. Powers, U. Pudasaini, R.A. Rimmer, H. Vennekate
    JLab, Newport News, VA, USA
  • J.P. Anderson, B.R.L. Coriton, L.D. Holland, K.R. McLaughlin, D.A. Packard, D.M. Vollmer
    GA, San Diego, California, USA
  • A.V. Gurevich
    ODU, Norfolk, Virginia, USA
  • J. Rathke
    TechSource, Los Alamos, New Mexico, USA
  • T. Schultheiss
    TJS Technologies, Commack, New York, USA
 
  Funding: Work supported by the U.S. DOE, ARDAP Office, under contract No. DE-AC05-06OR23177. SB¿s microscopy work at the NHMFL was partly supported by the U.S. DOE, HEP Office under Award No. DE-SC0009960.
Re­cent progress in the de­vel­op­ment of high-qual­ity Nb₃Sn film coat­ings along with the avail­abil­ity of cry­ocool­ers with high cool­ing ca­pac­ity at 4 K makes it fea­si­ble to op­er­ate SRF cav­i­ties cooled by ther­mal con­duc­tion at rel­e­vant ac­cel­er­at­ing gra­di­ents for use in ac­cel­er­a­tors. We have de­vel­oped a pro­to­type sin­gle-cell cav­ity to prove the fea­si­bil­ity of op­er­a­tion up to the ac­cel­er­at­ing gra­di­ent re­quired for 1 MeV en­ergy gain, cooled by con­duc­tion with cry­ocool­ers. The cav­ity has a ~3 ¿m thick Nb₃Sn film on the inner sur­face, de­posited on a ~4 mm thick bulk Nb sub­strate and a bulk ~7 mm thick Cu outer shell with three Cu at­tach­ment tabs. The cav­ity was tested up to a peak sur­face mag­netic field of 53 mT in liq­uid He at 4.3 K. A hor­i­zon­tal test cryo­stat was de­signed and built to test the cav­ity cooled with three cry­ocool­ers. The rf tests of the con­duc­tion-cooled cav­ity achieved a peak sur­face mag­netic field of 50 mT and sta­ble op­er­a­tion was pos­si­ble with up to 18.5 W of rf heat load. The peak fre­quency shift due to mi­cro­phon­ics was 23 Hz. These re­sults rep­re­sent the high­est peak sur­face mag­netic field achieved in a con­duc­tion-cooled SRF cav­ity to date
 
slides icon Slides THIXA04 [3.906 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)