SRF Technology
Tuners
Paper Title Page
WEPWB133 Testing of the 2.6 GHz SRF Cavity Tuner for the Dark Photon Experiment at 2 K 907
 
  • C. Contreras-Martinez, B. Giaccone, I.V. Gonin, T.N. Khabiboulline, O.S. Melnychuk, Y.M. Pischalnikov, S. Posen, O.V. Pronitchev, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  At FNAL two 2.6 GHz SRF cavities are being used to search for dark photons, the experiment can be conducted at 2 K or in a dilution refrigerator. Precise frequency tuning is required for these two cavities so they can be matched in frequency. A cooling capacity constraint on the dilution refrigerator only allows piezo actuators to be part of the design of the 2.6 GHz cavity tuner. The tuner is equipped with three encapsulated piezo that deliver the long- and short-range frequency tuning. Modifications were implemented on the first tuner design due to the low forces on the piezos due to the cavity. Three brass rods with Belleville washers were added to the design to increase the overall force on the piezos. The results at 2 K of testing this tuner with and without the modification will be presented.  
poster icon Poster WEPWB133 [0.829 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB133  
About • Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 04 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB134 Study of Different Piezoelectric Material Stroke Displacement at Different Temperatures Using an SRF Cavity 911
 
  • C. Contreras-Martinez, Y.M. Pischalnikov, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  Piezoelectric actuators are used for resonance control in superconducting linacs. The level of frequency compensation depends on the piezoelectric stroke displacement. In this study, the stroke displacement will be measured with a 1.3 GHz SRF cavity by measuring the frequency shift with respect to the voltage applied. The entire system was submerged in liquid helium. This study characterizes the PZT piezoelectric actuator (P-844K093) and a lithium niobate (P-844B0005) piezoelectric actuator. All these actuators were developed at Physik Instrumente (PI). The piezo-electric displacement was measured at different temperatures.  
poster icon Poster WEPWB134 [0.776 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB134  
About • Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 13 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB135 A Novel Twin Drive Tuner Mechanism for 1.3 GHz ILC Cavity 914
 
  • M. Yamanaka
    KEK, Ibaraki, Japan
 
  A tuner is a device that adjusts the resonant frequency of a cavity. Here we propose a new tuner mechanism for the 1.3 GHz ILC cavity. A bellow is provided in the central portion of the helium tank in the longitudinal direction, and flanges are provided on both sides of the bellows. A linear motion actuator is fixed to the flange on one side, and the frequency is changed by pushing and pulling the flange on the opposite side. Significantly, two linear motion actuators are placed in circumference and working simultaneously. It is named a twin-drive tuner. According to the ILC specification, the cavity has a spring constant of 3 KN/mm, requiring a stroke of 2 mm to adjust the 600 kHz range. A loading force of 6 kN is required. This is shared by two linear motion actuators. We developed a prototype actuator with a loading force of 4 kN per unit. It consists of a stepping motor and a sliding screw with a plastic nut. An experimental device was constructed using this actuator and a 1.3 GHz cavity with a helium tank, and the frequency tuning was evaluated. The displacement between the flanges and the frequency are proportional, both have good linearity, and the slope is 296 kHz/mm.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB135  
About • Received ※ 17 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 17 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB137 Prototype SSR2 Tuner Procurement and Testing at IJCLab for PIP-II Project 917
 
  • N. Gandolfo, P. Duchesne, D. Le Dréan, D. Longuevergne, G. Mavilla, T. Pépin-Donat
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • M. Parise, D. Passarelli, Y.M. Pischalnikov
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by IN2P3. Work supported, in part, by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under U.S. DOE Contract No. DE-AC02-07CH11359.
IJCLab is involved in the PIP-II project on the design and development of accelerator components for the SSR2 (Single Spoke Resonator type 2) section of the superconducting linac. Five prototype tuners have been built and are being tested at IJCLab. After a short description of the tuner, this paper reports on the procurement strategy and the performance observed at both room and low temperatures in vertical cryostat test with SSR2 prototype cavities. This paper will also share results on accelerated lifetime tests performed in a dedicated nitrogen-cooled cryostat.
 
poster icon Poster WEPWB137 [1.395 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB137  
About • Received ※ 19 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 16 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)