Paper | Title | Page |
---|---|---|
MOIXA03 | Proton Power Upgrade Project Progress and Plans at the Spallation Neutron Source in Oak Ridge Tennessee | 25 |
|
||
Funding: Work Supported by UT-Battelle, LLC, under contract DE-AC05-00OR22725 The Proton Power Upgrade project is well underway at the Spallation Neutron Source (SNS) facility in Oak Ridge, Tennessee. This project aims at increasing the proton beam power capability from 1.4 to 2.8 MW, by adding linac energy, increasing the beam current and implementing target developments to handle the increased beam power. This talk will cover the current status of increasing the beam energy, issues encountered along the way, operational experience with the new SRF cryomodules and target improvements and results from operation with beam so far. |
||
Slides MOIXA03 [3.327 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOIXA03 | |
About • | Received ※ 09 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 08 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMB078 | Design and Prototyping of the Electron Ion Collider Electron Storage Ring SRF Cavity | 293 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177 Among the EIC¿s numerous RF subsystems, the electron storage ring¿s (ESR) 591 MHz fundamental RF system is one of the most challenging. Each cavity in the system will handle up to 2.5 A of beam current and supply up to 600 kW beam power under a wide range of voltage. The EIC R&D plan includes the design, fabrication and testing of such a cavity. In this paper, we will report the latest status and findings of the ongoing design and prototyping of this cavity, including the RF and mechanical/thermal design, fabrication design, and the progress of fabrication. |
||
Poster MOPMB078 [1.489 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB078 | |
About • | Received ※ 12 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 19 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUCAA02 |
EIC Project Overview and Related SRF Technologies | |
|
||
Funding: This is authored by Jefferson Science Associate, LLC under U. S. DOE Contract No. DE-AC05-06OR23177. The Electron-Ion Collider (EIC), with a range of center-of-mass energies from 20 to 140 GeV, will enable experimental nuclear physics in the gluon-dominated regime with luminosity up to 1034 cm2 per second. The project chose to employ SRF technology for several accelerating and crab cavity geometries used throughout the accelerator complex to achieve the EIC¿s energy and luminosity goals. This presentation will review the current status of the EIC, the SRF technology used in the accelerator complex and current status of SRF R&D. The discussion will share EIC’s fundamental high-power coupler design & performance, high-power HOM power handling hardware, SRF elliptical and crab cavity designs and recent experimental results. |
||
Slides TUCAA02 [3.784 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB051 | Development of a Prototype 197 MHz Crab Cavity for the Electron-Ion Collider at JLab | 685 |
|
||
Thomas Jefferson National Accelerator Facility (JLab) is currently developing a prototype 197 MHz Radio-Frequency Dipole (RFD) crab cavity as part of the Electron-Ion Collider (EIC) to be built at Brookhaven National Laboratory (BNL). Cryomodules containing these cavities will be part of Hadron Storage Ring (HSR) of the EIC. The prototype cavity is constructed primarily of formed niobium sheets of thickness 4.17 mm, with machined niobium parts used as interfaces where tight tolerancing is required. The cavity¿s large size and complex features present a number of challenges in fabrication, tuning, and RF testing. Structural and forming analyses have been carried out to optimize the design and fabricated processes. An overview of the design phase and the current state of fabrication are presented in this paper.
Work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177 |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB051 | |
About • | Received ※ 17 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 16 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB089 | Theoretical Model of External Q Tuning for an SRF Cavity with Waveguide Tuner | 794 |
|
||
Funding: The work is supported by by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE. A wide range of electron beam energies (5 ¿ 18 GeV) and beam currents (0.2 ¿ 2.5 A) in EIC Electron Storage Ring (ESR) operating scenarios requires a capability of adjusting coupling factor up to a factor of 20 for the 591 MHz Superconducting Radio Frequency (SRF) cavities, which contains two fundamental power couplers (FPC) delivering continuous wave (CW) 800 kW RF power to the beam. Currently, adjusting external Q of a SRF cavity is done by varying protrusion of FPC¿s inner conductor in beam pipe or using three stub tuner to adjust external Q value, which either has limit on tuning range or limit on operating power. This paper presents a method of tuning the FPC external Q by a multiple-waveguide tuner, which allows for high power, wide tuning range operations. The theoretical model of matching beam impedance with waveguide tuner and detailed matching conditions and limits will be presented. Follow the theoretical model, a preliminary design of a 3D waveguide tuner will be presented. The work is supported by by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE. |
||
Poster WEPWB089 [1.269 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB089 | |
About • | Received ※ 26 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 19 August 2023 — Issue date ※ 22 August 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THIXA04 |
Development of a Prototype Superconducting Radio-Frequency Cavity for Conduction-Cooled Accelerators | |
|
||
Funding: Work supported by the U.S. DOE, ARDAP Office, under contract No. DE-AC05-06OR23177. SB¿s microscopy work at the NHMFL was partly supported by the U.S. DOE, HEP Office under Award No. DE-SC0009960. Recent progress in the development of high-quality Nb₃Sn film coatings along with the availability of cryocoolers with high cooling capacity at 4 K makes it feasible to operate SRF cavities cooled by thermal conduction at relevant accelerating gradients for use in accelerators. We have developed a prototype single-cell cavity to prove the feasibility of operation up to the accelerating gradient required for 1 MeV energy gain, cooled by conduction with cryocoolers. The cavity has a ~3 ¿m thick Nb₃Sn film on the inner surface, deposited on a ~4 mm thick bulk Nb substrate and a bulk ~7 mm thick Cu outer shell with three Cu attachment tabs. The cavity was tested up to a peak surface magnetic field of 53 mT in liquid He at 4.3 K. A horizontal test cryostat was designed and built to test the cavity cooled with three cryocoolers. The rf tests of the conduction-cooled cavity achieved a peak surface magnetic field of 50 mT and stable operation was possible with up to 18.5 W of rf heat load. The peak frequency shift due to microphonics was 23 Hz. These results represent the highest peak surface magnetic field achieved in a conduction-cooled SRF cavity to date |
||
Slides THIXA04 [3.906 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |