Author: Duchesne, P.
Paper Title Page
TUPTB045 PIP-II SSR2 Cavities Fabrication and Processing Experience 526
 
  • M. Parise, P. Berrutti, D. Passarelli
    Fermilab, Batavia, Illinois, USA
  • P. Duchesne, D. Longuevergne
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
 
  The Proton Improvement Plan-II (PIP-II) linac will include 35 Single Spoke Resonators type 2 (SSR2). A pre-production SSR2 cryomodule will contain 5 jacketed cavities. Several units are already manufactured and prepared for cold testing. In this work, data collected from the fabrication, processing and preparation of the cavities will be presented and the improvements implemented after the completion of the first unit will be highlighted.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB045  
About • Received ※ 19 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 08 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB058 Contribution of IN2P3 to PIP-II Project: Plans and Progress 714
 
  • D. Longuevergne, N. Bippus, P. Duchesne, N. Gandolfo, D. Le Dréan, G. Mavilla, T. Pépin-Donat, S. Roset, L.M. Vogt, S. Wallon
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • P. Berrutti, J. Helsper, S. Kazakov, M. Parise, D. Passarelli, N. Solyak, A.I. Sukhanov
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by IN2P3. Work supported, in part, by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under U.S. DOE Contract No. DE-AC02-07CH11359.
IJCLab is one of the labs of IN2P3 (National institute of nuclear and particle physics), one of the ten research institutes composing the French National Center for Scientific Research (CNRS). Since 2018, IJCLab has been involved in the PIP-II project, assisting with the design, development, and qualification of accelerator components for the SSR2 (Single Spoke Resonator type 2) section of the superconducting linac. The first pre-production components (cavity, coupler, and tuner) have been fabricated, and some of the first qualification tests have been performed at IJCLab. This paper will summarize the complete scope of IJCLab¿s contributions to PIP-II and give updates on the performances of the first pre-production components.
 
poster icon Poster WEPWB058 [1.727 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB058  
About • Received ※ 24 June 2023 — Revised ※ 28 June 2023 — Accepted ※ 05 July 2023 — Issue date ※ 10 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB103 Simulations and First RF Measurements of Coaxial HOM Coupler Prototypes for PERLE SRF Cavities 831
 
  • C. Barbagallo, P. Duchesne, W. Kaabi, G. Olivier, G. Olry, S. Roset, Z.F. Zomer
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • B.S. Barriere, C.S. Clement, R.L.A. Gerard, F. Gerigk, P.M. Maurin
    CERN, Meyrin, Switzerland
  • J. Henry, S.A. Overstreet, G.-T. Park, R.A. Rimmer, H. Wang
    JLab, Newport News, Virginia, USA
 
  Superconducting Radio-Frequency (SRF) linac cryomodules are foreseen for the high-current multi-turn energy recovery linac PERLE (Powerful Energy Recovery Linac for Experiments). Coaxial higher order mode (HOM) couplers are the primary design choice to absorb beam-induced power and avoid beam instabilities. We have used 3D-printed and copper-coated HOM couplers for the prototyping and bench RF measurements on the copper PERLE cavities. We have started a collaboration with JLab and CERN on this effort. This paper presents electromagnetic simulations of the cavity HOM-damping performance on those couplers. Bench RF measurements of the HOMs on an 801.58 MHz 2-cell copper cavity performed at JLab are detailed. The results are compared to eigenmode simulations in CST to confirm the design. RF-thermal simulations are conducted to investigate if the studied HOM couplers undergo quenching.  
poster icon Poster WEPWB103 [1.533 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB103  
About • Received ※ 18 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 02 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB104 RF Conditioning of MYRRHA Couplers at IJCLab 835
 
  • N. ElKamchi, S. Berthelot, P. Duchesne, C. Joly, W. Kaabi, C. Magueur
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • Y. Gómez Martínez
    LPSC, Grenoble Cedex, France
  • C. Lhomme
    IJCLab, ORSAY, France
 
  Multi-purpose hYbrid Research Reactor for High-tech Applications (MYRRHA) is an experimental accelerator-driven system in development at SCK•CEN. It will allow fuel developments, material developments for GEN IV systems, material developments for fusion reactors and radioisotope production for medical and industrial applications1. The IJCLab has in charge the industrial monitoring, the quality control and the RF conditioning of the power couplers up to 80KW at 352Mhz. This paper presents the conditioning bench adapted from the successful experience of IJCLab in the conditioning of the XFEL couplers2. The results of the conditioning of prototype couplers are described and discussed.
1. Abderrahim, P. MYRRHA a multi-purpose hybrid research reactor for high-tech applications. United States: N. p., 2012. Web
2. H. Guler, Proceedings of IPAC2016, Busan, Korea
 
poster icon Poster WEPWB104 [0.875 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB104  
About • Received ※ 26 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 08 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB105 Improved Study of the Multipactor Phenomenon for the MYRRHA 80 kW CW RF Couplers 838
 
  • Y. Gómez Martínez, P.-O. Dumont
    LPSC, Grenoble Cedex, France
  • P. Duchesne, N. ElKamchi, C. Joly, W. Kaabi
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • C. Lhomme
    IJCLab, ORSAY, France
  • C. Lhomme
    ACS, Orsay, France
 
  MYRRHA (Multi Purpose Hybrid Reactor for High Tech Applications) is an Accelerator Driven System (ADS) project. Its superconducting linac will provide a 600 MeV - 4 mA proton beam. The first project phase based on a 100 MeV linac is launched. The Radio-Frequency (RF) couplers have been designed to handle 80 kW CW (Continuous Wave) at 352.2 MHz. This paper describes the multipactor studies on the coupler when it does not work in the nominal configuration without reflected power.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB105  
About • Received ※ 18 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 12 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB137 Prototype SSR2 Tuner Procurement and Testing at IJCLab for PIP-II Project 917
 
  • N. Gandolfo, P. Duchesne, D. Le Dréan, D. Longuevergne, G. Mavilla, T. Pépin-Donat
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • M. Parise, D. Passarelli, Y.M. Pischalnikov
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by IN2P3. Work supported, in part, by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under U.S. DOE Contract No. DE-AC02-07CH11359.
IJCLab is involved in the PIP-II project on the design and development of accelerator components for the SSR2 (Single Spoke Resonator type 2) section of the superconducting linac. Five prototype tuners have been built and are being tested at IJCLab. After a short description of the tuner, this paper reports on the procurement strategy and the performance observed at both room and low temperatures in vertical cryostat test with SSR2 prototype cavities. This paper will also share results on accelerated lifetime tests performed in a dedicated nitrogen-cooled cryostat.
 
poster icon Poster WEPWB137 [1.395 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB137  
About • Received ※ 19 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 16 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THIAA04 Performance Analysis of Spoke Resonators, Statistics from Cavity Fabrication to Cryomodule Testing 940
 
  • A. Miyazaki, P. Duchesne, D. Le Dréan, D. Longuevergne, G. Olry
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
 
  Irène Joliot-Curie Laboratory (IJCLab) has been leading the development of spoke resonators in multiple interna- tional SRF projects, from fundamental R&D, prototyping, to series production. The European Spallation Source (ESS) superconducting linac is the first of its kind to put into op- eration the spoke resonators. After three prototype cavities, 29 ESS production cavities have been processed, tested, as- sembled into cryomodules at IJCLab, and then shipped to Uppsala for the site acceptance test. Seven prototypes for two other major projects, Multi-purpose hYbrid Research Reactor for High-tech Application (MYRRHA) and Proton Improvement Plan II (PIP-II), designed in collaboration with external institutions, have as well been processed and tested at IJCLab. A new challenge is to fully process series cavi- ties in industry, following the successful implementation of 1.3 GHz elliptical cavities in the other projects. This paper summarises main results obtained from fabrication to final testing, including frequency tuning strategy, performance, limitation in vertical cryostat, and identifies future direction of projects and R&D in the field of spoke cavities.  
slides icon Slides THIAA04 [4.623 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-THIAA04  
About • Received ※ 18 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 19 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)