Paper | Title | Page |
---|---|---|
WECAA01 | Progress in European Thin Film Activities | 607 |
|
||
Funding: This project has received funding from the European Union s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730. Thin-film cavities with higher Tc superconductors (SC) than Nb promise to move the operating temperature from 2 to 4.5 K with savings 3 orders of magnitude in cryogenic power consumption. Several European labs are coordinating their efforts to obtain a first 1.3 GHz cavity prototype through the I.FAST collaboration and other informal collaborations with CERN and DESY. R&D covers the entire production chain. In particular, new production techniques of seamless Copper and Niobium elliptical cavities via additive manufacturing are studied and evaluated. New acid-free polishing techniques to reduce surface roughness in a more sustainable way such as plasma electropolishing and metallographic polishing have been tested. Optimization of coating parameters of higher Tc SC than Nb (Nb₃Sn, V₃Si, NbTiN) via PVD and multilayer via ALD are on the way. Finally, rapid heat treatments such as Flash Lamp Annealing and Laser Annealing are used to avoid or reduce Cu diffusion in the SC film. The development and characterization of SC coatings is done on planar samples, 6 GHz cavities, choke cavities, QPR and 1.3 GHz cavities. This work presents the progress status of these coordinated efforts. |
||
Slides WECAA01 [15.846 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WECAA01 | |
About • | Received ※ 18 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 02 September 2023 — Issue date ※ 02 September 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB118 | Study and Improvements of Liquid Tin Diffusion Process to Synthesize Nb₃Sn Cylindrical Targets | 868 |
SUSPB033 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This project has received funding from the European Union¿s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730. Work supported by the INFN CSNV experiment SAMARA. Nb₃Sn thin films on bulk Nb cavities exhibit comparable performance to bulk Nb at lower temperatures, and using Cu as a substrate material can further improve performance and reduce costs. However, coating substrates with curved geometries like elliptical cavities can be challenging due to the brittleness of Nb₃Sn targets produced by a classical sintering technique. This work explores the use of the Liquid Tin Diffusion (LTD) technique to produce sputtering targets for 6 GHz elliptical cavities, which allows for the deposition of thick and uniform coatings on Nb substrate, even for complex geometries. The study includes improvements in the LTD process and the production of a single-use LTD target, as well as the characterization of Nb₃Sn films coated by DC magnetron sputtering using these innovative targets. |
||
Poster WEPWB118 [5.462 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB118 | |
About • | Received ※ 17 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 01 August 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMB009 | Plasma Electrolytic Polishing Technology Progress Development for Nb and Cu Substrates Preparation | 75 |
SUSPB005 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Work supported by the INFN CSNV experiment SAMARA. Fundings from the EU’s Horizon 2020 Research and Innovation programme under Grant Agreement N 101004730. PNRR MUR project PE0000023-NQSTI. Superconducting radio frequency (SRF) cavity performance is highly dependent on surface preparation. Conventionally, electropolishing (EP) is used to achieve a clean surface and low roughness for both Nb and Cu substrates, but it requires harsh and corrosive solutions like concentrated acids. Plasma Electrolytic Polishing (PEP) is a promising alternative that uses only diluted salt solutions and has several advantages over EP. PEP can replace intermediate steps like mechanical or chemical polishing, thanks to its superior removal rate of up to 2-8 um/min of Nb and 3-30 um/min of Cu. It achieves Ra roughness of 100 nm for both substrates and has a higher smoothing effect than EP. PEP is also suitable for normal conducting cavities and other accelerator components, including couplers. We demonstrate the effectiveness of PEP on SRF substrates and analyse substrate defect evaluation. We demonstrate the application of PEP onto SRF substrates and analyse the substrate’s defect evaluation. The ongoing work includes Nb bulk and Nb on Cu QPR treatments and RF tests in collaboration with HZB. |
||
Poster MOPMB009 [11.877 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB009 | |
About • | Received ※ 17 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 17 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMB013 | Influence of the Coating Parameters on the Tc of Nb₃Sn Thin Films on Copper Deposited via DC Magnetron Sputtering | 92 |
SUSPB007 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: The I.FAST project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730. Work supported by the INFN CSNV experiment SAMARA. The I.FAST collaboration aims at pushing the performance of particle accelerators by developing sustainable innovative technologies. Among its goals, the development of thin film-coated copper elliptical accelerating cavities covers both the optimization of the manufacturing of seamless substrates and the development of functional coatings able to conform to the 3D cavity geometry while delivering the needed performance. For the latter, the optimization of the deposition recipe is central to a successful outcome. The work presented here focuses on the deposition of Nb₃Sn films on flat, small copper samples. The films are deposited via DCMS from a planar stoichiometric Nb₃Sn commercial target. The results of the film characterization are presented here. The observed dependencies between the film properties and, in particular, Tc(90%-10%) = (17.9±0.1)K is reported for Nb₃Sn on sapphire and Tc(90%-10%) = (16.9±0.2)K for Nb₃Sn on copper with a 30 micron thick niobium buffer layer. |
||
Poster MOPMB013 [1.749 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB013 | |
About • | Received ※ 18 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 02 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMB014 | NbTi Thin Film SRF Cavities for Dark Matter Search | 96 |
SUSPB008 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Resources from U.S. DOE, Ofce of Science, NQISRC, SQMS contract No DE-AC02-07CH11359. Also from EU’s Horizon 2020 Research and Innovation programme, Grant Agreement No 101004730; INFN CSNV exp. SAMARA The search for dark matter is now looking at ALPs (axion-like particles) as a very promising candidate to understand our universe. Within this framework, we explore the possibility to use NbTi thin film coatings on Cu resonating cavities to investigate the presence of axions in the range of 35-45 µeV mass by coupling the axion to a very strong magnetic field inside the cavity, causing its conversion to a photon which is subsequently detected. In this work the chemical treatments and DC magnetron sputtering details of the preparation of 9 GHz, 7 GHz, and 3.9 GHz resonant cavities and their quality factor measurements at different applied magnetic fields are presented. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB014 | |
About • | Received ※ 18 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 26 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |