Author: Shemelin, V.D.
Paper Title Page
MOPMB094 Design of a 1.3 GHz High-Power RF Coupler for Conduction-Cooled Systems 342
SUSPB027   use link to see paper's listing under its alternate paper code  
 
  • N.A. Stilin, A.T. Holic, M. Liepe, T.I. O’Connell, P. Quigley, J. Sears, V.D. Shemelin, J. Turco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Cornell is designing a new standalone, compact SRF cryomodule which uses cryocoolers in place of liquid helium for cooling. One of the biggest challenges in implementing such a system is designing a high-power input coupler which is able to be cooled by the cryocoolers without any additional liquid cryogenics. Due to the limited heat load capacity of the cryocoolers at 4.2 K, this requires very careful thermal isolation of the 4.2 K portion of the coupler and thorough optimization of the RF behavior to minimize losses. This paper will present the various design considerations which enabled the creating of a conduction-cooled 1.3 GHz input coupler capable of delivering up to 100 kW CW RF power.  
poster icon Poster MOPMB094 [0.964 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB094  
About • Received ※ 16 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 23 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB026 Measurements of High Values of Dielectric Permittivity Using Transmission Lines 447
 
  • V.D. Shemelin, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: DOE
Usage of lossy materials is necessary for absorption of higher order modes excited in the RF cavities. Presently, measurements of lossy materials with usage of transmission lines give errors rapidly increasing with increase of the dielectric permittivity. A method is presented for measurements of high values of dielectric permittivity epsilon in a waveguide at high frequencies with lower errors. This method supplements the method of measurements evolved for low values of epsilon and is close to resonant methods, when a sample is placed into a cavity and the measurement is done at one only frequency. The new approach with use of Microwave Studio simulations makes possible to measure this value in several frequency points at one measurement.
 
poster icon Poster TUPTB026 [0.872 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB026  
About • Received ※ 20 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 02 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB036 Equidistant Optimization of Elliptical SRF Standing Wave Cavities 480
 
  • V.D. Shemelin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  A record accelerating rate was achieved earlier in standing wave (SW) SRF cavities when their shape was optimized for lower peak surface magnetic field. In view of new materials with higher limiting magnetic fields, expected for SRF cavities, in the first line Nb₃Sn, the approach to optimization of cavity shape should be revised. A method of equidistant optimization, offered earlier for traveling wave cavities is applied to SW cavities. It is shown here that without limitation by magnetic field, the maximal accelerating rate is defined to a significant degree by the cavity shape. For example, for a cavity with the aperture radius Ra = 35 mm the minimal ratio of the peak surface electric field to the accelerating rate is about Epk/Eacc = 1.54. So, with the maximal surface field experimentally achieved Epk ¿ 125 MV/m, the maximal achievable accelerating rate is about 80 MeV/m even if there are no restrictions by the magnetic field. Another opportunity ¿ optimization for a low magnetic field, is opening for the same material, Nb₃Sn, with the purpose to have a high quality factor and increased accelerating rate that can be used for industrial linacs.  
poster icon Poster TUPTB036 [0.787 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB036  
About • Received ※ 15 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 08 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THIXA05 Conduction-Cooled SRF Cavities: Opportunities and Challenges 973
 
  • N.A. Stilin, H. Conklin, T. Gruber, A.T. Holic, M. Liepe, T.I. O’Connell, P. Quigley, J. Sears, V.D. Shemelin, J. Turco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Thanks to improvements in the performance of both commercial cryocoolers and Nb₃Sn-coated superconducting radio-frequency (SRF) cavities, it is now possible to design and build compact, SRF cryomodules without the need for liquid cryogenics. In addition, these systems offer robust, non-expert, turn-key operation, making SRF technology significantly more accessible for smaller-scale applications in fields such as industry, national security, medicine, environmental sustainability, etc. To fully realize these systems, many technical and operational challenges must be overcome. These include properly cooling the SRF cavity via thermal conduction and designing high-power (~ 100 kW continuous) RF couplers which dissipate minimal heat (~ 1 W) at 4.2 K. This presentation will discuss these challenges and the solutions which have been developed at Cornell University and elsewhere.  
slides icon Slides THIXA05 [7.219 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-THIXA05  
About • Received ※ 27 June 2023 — Revised ※ 29 June 2023 — Accepted ※ 04 July 2023 — Issue date ※ 08 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)