Author: Chang, W.
Paper Title Page
MOIAA01 FRIB Transition to User Operations, Power Ramp Up, and Upgrade Perspectives 1
 
  • J. Wei, H. Ao, B. Arend, S. Beher, G. Bollen, N.K. Bultman, F. Casagrande, W. Chang, Y. Choi, S. Cogan, C. Compton, M. Cortesi, J.C. Curtin, K.D. Davidson, X.J. Du, K. Elliott, B. Ewert, A. Facco, A. Fila, K. Fukushima, V. Ganni, A. Ganshyn, T.N. Ginter, T. Glasmacher, J.-W. Guo, Y. Hao, W. Hartung, N.M. Hasan, M. Hausmann, K. Holland, H.-C. Hseuh, M. Ikegami, D.D. Jager, S. Jones, N. Joseph, T. Kanemura, S.H. Kim, C. Knowles, T. Konomi, B.R. Kortum, E. Kwan, T. Lange, M. Larmann, T.L. Larter, K. Laturkar, R.E. Laxdal, J. LeTourneau, Z. Li, S.M. Lidia, G. Machicoane, C. Magsig, P.E. Manwiller, F. Marti, T. Maruta, E.S. Metzgar, S.J. Miller, Y. Momozaki, D.G. Morris, M. Mugerian, I.N. Nesterenko, C. Nguyen, P.N. Ostroumov, M.S. Patil, A.S. Plastun, L. Popielarski, M. Portillo, J. Priller, X. Rao, M.A. Reaume, K. Saito, B.M. Sherrill, M.K. Smith, J. Song, M. Steiner, A. Stolz, O. Tarasov, B.P. Tousignant, R. Walker, X. Wang, J.D. Wenstrom, G. West, K. Witgen, M. Wright, T. Xu, Y. Yamazaki, T. Zhang, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • K. Hosoyama
    KEK, Ibaraki, Japan
  • P. Hurh
    Fermilab, Batavia, Illinois, USA
  • M.P. Kelly, Y. Momozaki
    ANL, Lemont, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
  • S.O. Prestemon
    LBNL, Berkeley, California, USA
  • M. Wiseman
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
After project completion on scope, on cost, and ahead of schedule, the Facility for Rare Isotope Beams began operations for scientific users in May of 2022. During the first 12 months of user operations, the FRIB accelerator complex delivered 5250 beam hours, including 1528 hours to nine science experiments conducted with primary beams of 36Ar, 48Ca, 70Zn, 82Se, 124Xe, and 198Pt at beam energies >200 MeV/u; 2724 hours for beam developments, studies, and tuning; and 998 hours to industrial users and non-scientific programs using the FRIB Single Event Effect (FSEE) beam line. The ramp-up to a beam power of 400 kW is planned over a six-year period; 1 kW was delivered for initial user runs from in 2022, and 5 kW was delivered as of February 2023. Upgrade plans include doubling the primary-beam energy to 400 MeV/nucleon for enhanced discovery potential (¿FRIB 400¿). This talk reports on FRIB status and progress since SRF2021, emphasizing lessons learned during the transition from beam commissioning to machine operations, challenges and resolutions for the power ramp-up, progress with accelerator improvements, and R&D for the energy upgrade.
 
slides icon Slides MOIAA01 [7.037 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOIAA01  
About • Received ※ 20 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 03 July 2023 — Issue date ※ 19 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB128 Experimental Study of Mechanical Dampers for the FRIB β=0.041 Quarter-Wave Resonators 898
SUSPB036   use link to see paper's listing under its alternate paper code  
 
  • J. Brown, W. Chang, W. Hartung, S.H. Kim, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the US Department of Energy, Office of Science, High Energy Physics under Cooperative Agreement award numbers DE-SC0018362 and DE-SC0000661 and Michigan State University.
The ’pendulum’ mechanical mode of quarter-wave resonators (QWR) often causes an issue with microphonics and/or ponderomotive instability unless otherwise the inner conductors are properly stiffened and/or damped. FRIB QWRs are equipped with a Legnaro-style frictional damper installed inside of the inner conductor such that it counteracts the oscillations of the inner conductor. In cryomodule tests and linac operation, we observed that the damping efficiency is different for a few β=0.041 QWRs. This study aimed to experimentally characterize the damping efficacy as a function of damper mass and surface roughness. We present damping measurements at room temperature and at two different masses and surface roughness as well as discuss future studies for damper re-optimization based on this follow-on study.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB128  
About • Received ※ 20 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 04 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THIXA01 Investigation of Plasma Processing for Coaxial Resonators 960
 
  • W. Hartung, W. Chang, K. Elliott, S.H. Kim, T. Konomi, K. Saito, P.R. Tutt, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  Plasma processing has been investigated by several facilities as a method to mitigate degradation of SRF cavity performance. It provides an alternative to removal and disassembly of cryomodules for refurbishment of each cavity via repeat etching and rinsing. Promising results have been obtained by several groups. Studies of plasma processing for quarter-wave resonators (QWRs) and half-wave resonators (HWRs) were undertaken at FRIB, where a total of 324 such resonators are presently in operation. Plasma ignition and optimization measurements were done with room-temperature-matched input couplers. Plasma cleaning tests were done on several QWRs using the fundamental power coupler (FPC) to drive the plasma. We investigated the usefulness of higher-order modes (HOMs) to drive the plasma. HOMs allow for less mismatch at the FPC and hence lower field in the coupler relative to the cavity. Before-and-after cold tests showed a significant reduction in field emission X-rays with judicious application of plasma processing.  
slides icon Slides THIXA01 [2.060 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-THIXA01  
About • Received ※ 01 September 2023 — Accepted ※ 02 September 2023 — Issue date ※ 02 September 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRIBA01
SRF R&D for FRIB Linac Energy Upgrade with High-performance Medium-beta Elliptical Cavity CW Cryomodules  
 
  • S.H. Kim, W. Chang, K. Elliott, W. Hartung, K.E. McGee, E.S. Metzgar, P.N. Ostroumov, L. Popielarski, J. Rathke, T. Xu, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • D.J. Bice, C. Contreras-Martinez, G.V. Eremeev, Y.M. Pischalnikov
    Fermilab, Batavia, Illinois, USA
  • B.M. Guilfoyle, M.P. Kelly, T. Reid
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy under Award Number DE-SC0000661. Further support provided by the US Department of Energy under Cooperative Agreement award number DE-SC0018362.
Michigan State University is pursuing SRF R&D for FRIB400 upgrade, doubling the FRIB linac beam energy (400 MeV/u for the heaviest uranium beam) using ßopt=0.65 644 MHz 5-cell elliptical cavities. We have achieved unprecedented Q₀ in this cavity class, Q₀ = 3.5·1010 at Eacc of 17.5 MV/m in a nitrogen-doped bare niobium cavity in collaboration with FNAL and ANL. The next missions are achieving such high Q₀ in jacketed cavities and in cryomodules, achieving field-emission free performance at Epeak of 40 MV/m with reproducibility, developing a compact two-window high-power fundamental power coupler (15 kW CW), and achieving stable resonance control of cavities integrated with tuners in cryomodules. In this talk, we will present progress of the SRF R&D and discuss future plan.
 
slides icon Slides FRIBA01 [2.513 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRIBA05 Automation of FRIB SRF Cavities and SC Solenoids Turn-on/off 999
 
  • W. Chang, Y. Choi, X.J. Du, W. Hartung, S.H. Kim, T. Konomi, S.R. Kunjir, H. Nguyen, K. Saito, T. Xu, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
 
  The superconducting driver Linac for the Facility for Rare Isotope Beams (FRIB) is a heavy ion accelerator that accelerate ions to 200 MeV per nucleon. The Linac has 46 cryomodules that contain 324 superconducting radio frequency (SRF) cavities and 69 superconducting (SC) solenoid packages. For operation of all cryomodules with high efficiency and reliability, automation for SRF cavity and SC solenoid fast turn-on/off is essentially. Based on cryomodule commissioning results and expert experience, all manual cavity and solenoid turn-on/off procedures and steps have been replaced by automatic programs for FRIB linac operation. This allows the operators to turn the systems on and off without expert-level training. Automation reduces the risk of human error, speeds up beam recovery after user access to experimental areas, and increases beam availability. The cavity turn-on procedure makes sure that the cavity can operate at low field with expected read backs, ramps up the field, and makes sure that the RF amplitude and phase are stable. The design, implementation, and operating experience with automation will be presented.  
slides icon Slides FRIBA05 [3.503 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-FRIBA05  
About • Received ※ 29 June 2023 — Revised ※ 16 August 2023 — Accepted ※ 21 August 2023 — Issue date ※ 21 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRIBA07 Status of the SLAC/MSU SRF Gun Development Project 1003
 
  • S.J. Miller, Y. Al-Mahmoud, W. Chang, Y. Choi, C. Compton, X.J. Du, K. Elliott, W. Hartung, J.D. Hulbert, S.H. Kim, T. Konomi, D.G. Morris, M.S. Patil, L. Popielarski, K. Saito, A. Taylor, B.P. Tousignant, J. Wei, J.D. Wenstrom, K. Witgen, T. Xu
    FRIB, East Lansing, Michigan, USA
  • C. Adolphsen, R. Coy, F. Ji, M.J. Murphy, J. Smedley, L. Xiao
    SLAC, Menlo Park, California, USA
  • A. Arnold, S. Gatzmaga, P. Murcek, J. Teichert, R. Xiang
    HZDR, Dresden, Germany
  • M.P. Kelly, T.B. Petersen, P. Piot
    ANL, Lemont, Illinois, USA
  • J.W. Lewellen
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the Department of Energy under Contract DE-AC02-76SF00515
The Linac Coherent Light Source II High Energy (LCLS-II-HE) Project at SLAC includes the construction of a low-emittance injector (LEI) and a superconducting quarter-wave resonator (QWR) at 185.7 MHz. Several alternatives to a superconducting radio frequency (SRF) QWR gun were considered for the LEI, including nor-mal-conducting RF guns evolved from the LCLS-II gun design. Compared to normal-conducting designs, the combination of an intrinsically outstanding vacuum environment (for cathode lifetime), and the potential for a larger ultimate performance envelope, led to the deci-sion to pursue development of the QWR-SRF gun. A prototype gun is currently being designed and fabricated at the Facility for Rare Isotope Beams (FRIB) at Michi-gan State University (MSU). This paper presents perfor-mance goals for the new gun design, an overview of the prototype development effort, status, and future plans including fabrication.
 
slides icon Slides FRIBA07 [9.655 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-FRIBA07  
About • Received ※ 15 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 11 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)