Author: Chyhyrynets, E.
Paper Title Page
MOPMB001 Development and Testing of Split 6 GHz Cavities With Niobium Coatings 51
 
  • N.L. Leicester, G. Burt, H.S. Marks
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • E. Chyhyrynets, C. Pira
    INFN/LNL, Legnaro (PD), Italy
  • J.A. Conlon, O.B. Malyshev, B.S. Sian, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D.J. Seal
    Lancaster University, Lancaster, United Kingdom
 
  Su­per­con­duct­ing thin-films on a cop­per sub­strate are used in ac­cel­er­a­tor RF cav­i­ties as an al­ter­na­tive to bulk Nb due to the high ther­mal con­duc­tiv­ity of cop­per and the lower pro­duc­tion costs. Al­though thin-film coated RF cav­i­ties can match, or even ex­ceed the per­for­mance of bulk Nb, there are some chal­lenges around the de­po­si­tion. The RF cav­i­ties are often pro­duced as two half-cells with a weld across the cen­tre where the RF sur­face cur­rent is high­est, which could re­duce cav­ity per­for­mance. To avoid this, a cav­ity can be pro­duced in 2 lon­gi­tu­di­nally split halves, with the join par­al­lel to the sur­face cur­rent. As the cur­rent doesn’t cross the join a sim­pler weld can be per­formed far from the fields, sim­pli­fy­ing the man­u­fac­tur­ing process, and po­ten­tially im­prov­ing the cav­i­ties per­for­mance. This ad­di­tion­ally al­lows for dif­fer­ent de­po­si­tion tech­niques and coat­ing ma­te­ri­als to be used, as well as eas­ier post-de­po­si­tion qual­ity con­trol. This paper dis­cusses the de­vel­op­ment and test­ing of 6 GHz cav­i­ties that have been de­signed and coated at the Cock­croft In­sti­tute, using low tem­per­a­ture RF tech­niques to char­ac­terise cav­i­ties with dif­fer­ent sub­strate prepa­ra­tions and coat­ing tech­niques.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB001  
About • Received ※ 18 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 04 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB009 Plasma Electrolytic Polishing Technology Progress Development for Nb and Cu Substrates Preparation 75
SUSPB005   use link to see paper's listing under its alternate paper code  
 
  • E. Chyhyrynets, O. Azzolini, R. Caforio, D. Fonnesu, D. Ford, G. Keppel, C. Pira, A. Salmaso, F. Stivanello
    INFN/LNL, Legnaro (PD), Italy
  • G. Marconato
    Università degli Studi di Padova, Padova, Italy
 
  Funding: Work supported by the INFN CSNV experiment SAMARA. Fundings from the EU’s Horizon 2020 Research and Innovation programme under Grant Agreement N 101004730. PNRR MUR project PE0000023-NQSTI.
Su­per­con­duct­ing radio fre­quency (SRF) cav­ity per­for­mance is highly de­pen­dent on sur­face prepa­ra­tion. Con­ven­tion­ally, elec­trop­o­l­ish­ing (EP) is used to achieve a clean sur­face and low rough­ness for both Nb and Cu sub­strates, but it re­quires harsh and cor­ro­sive so­lu­tions like con­cen­trated acids. Plasma Elec­trolytic Pol­ish­ing (PEP) is a promis­ing al­ter­na­tive that uses only di­luted salt so­lu­tions and has sev­eral ad­van­tages over EP. PEP can re­place in­ter­me­di­ate steps like me­chan­i­cal or chem­i­cal pol­ish­ing, thanks to its su­pe­rior re­moval rate of up to 2-8 um/min of Nb and 3-30 um/min of Cu. It achieves Ra rough­ness of 100 nm for both sub­strates and has a higher smooth­ing ef­fect than EP. PEP is also suit­able for nor­mal con­duct­ing cav­i­ties and other ac­cel­er­a­tor com­po­nents, in­clud­ing cou­plers. We demon­strate the ef­fec­tive­ness of PEP on SRF sub­strates and analyse sub­strate de­fect eval­u­a­tion. We demon­strate the ap­pli­ca­tion of PEP onto SRF sub­strates and analyse the sub­strate’s de­fect eval­u­a­tion. The on­go­ing work in­cludes Nb bulk and Nb on Cu QPR treat­ments and RF tests in col­lab­o­ra­tion with HZB.
 
poster icon Poster MOPMB009 [11.877 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB009  
About • Received ※ 17 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 17 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB013 Influence of the Coating Parameters on the Tc of Nb₃Sn Thin Films on Copper Deposited via DC Magnetron Sputtering 92
SUSPB007   use link to see paper's listing under its alternate paper code  
 
  • D. Fonnesu, O. Azzolini, R. Caforio, E. Chyhyrynets, D. Ford, V.A. Garcia, G. Keppel, C. Pira, A. Salmaso, F. Stivanello
    INFN/LNL, Legnaro (PD), Italy
  • G. Marconato
    Università degli Studi di Padova, Padova, Italy
 
  Funding: The I.FAST project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730. Work supported by the INFN CSNV experiment SAMARA.
The I.​FAST col­lab­o­ra­tion aims at push­ing the per­for­mance of par­ti­cle ac­cel­er­a­tors by de­vel­op­ing sus­tain­able in­no­v­a­tive tech­nolo­gies. Among its goals, the de­vel­op­ment of thin film-coated cop­per el­lip­ti­cal ac­cel­er­at­ing cav­i­ties cov­ers both the op­ti­miza­tion of the man­u­fac­tur­ing of seam­less sub­strates and the de­vel­op­ment of func­tional coat­ings able to con­form to the 3D cav­ity geom­e­try while de­liv­er­ing the needed per­for­mance. For the lat­ter, the op­ti­miza­tion of the de­po­si­tion recipe is cen­tral to a suc­cess­ful out­come. The work pre­sented here fo­cuses on the de­po­si­tion of Nb₃Sn films on flat, small cop­per sam­ples. The films are de­posited via DCMS from a pla­nar sto­i­chio­met­ric Nb₃Sn com­mer­cial tar­get. The re­sults of the film char­ac­ter­i­za­tion are pre­sented here. The ob­served de­pen­den­cies be­tween the film prop­er­ties and, in par­tic­u­lar, Tc(90%-10%) = (17.9±0.1)K is re­ported for Nb₃Sn on sap­phire and Tc(90%-10%) = (16.9±0.2)K for Nb₃Sn on cop­per with a 30 mi­cron thick nio­bium buffer layer.
 
poster icon Poster MOPMB013 [1.749 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB013  
About • Received ※ 18 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 02 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB014 NbTi Thin Film SRF Cavities for Dark Matter Search 96
SUSPB008   use link to see paper's listing under its alternate paper code  
 
  • G. Marconato
    Università degli Studi di Padova, Padova, Italy
  • D. Alesini, A. D’Elia, D. Di Gioacchino, C. Gatti, C. Ligi, G. Maccarrone, A. Rettaroli, S. Tocci
    LNF-INFN, Frascati, Italy
  • O. Azzolini, R. Caforio, E. Chyhyrynets, D. Fonnesu, D. Ford, V.A. Garcia, G. Keppel, C. Pira, A. Salmaso, F. Stivanello
    INFN/LNL, Legnaro (PD), Italy
  • C. Braggio
    Univ. degli Studi di Padova, Padova, Italy
  • D. D’Agostino, U. Gambardella
    INFN-Salerno, Baronissi, Salerno, Italy
  • S. Posen
    Fermilab, Batavia, Illinois, USA
 
  Funding: Resources from U.S. DOE, Ofce of Science, NQISRC, SQMS contract No DE-AC02-07CH11359. Also from EU’s Horizon 2020 Research and Innovation programme, Grant Agreement No 101004730; INFN CSNV exp. SAMARA
The search for dark mat­ter is now look­ing at ALPs (ax­ion-like par­ti­cles) as a very promis­ing can­di­date to un­der­stand our uni­verse. Within this frame­work, we ex­plore the pos­si­bil­ity to use NbTi thin film coat­ings on Cu res­onat­ing cav­i­ties to in­ves­ti­gate the pres­ence of ax­ions in the range of 35-45 µeV mass by cou­pling the axion to a very strong mag­netic field in­side the cav­ity, caus­ing its con­ver­sion to a pho­ton which is sub­se­quently de­tected. In this work the chem­i­cal treat­ments and DC mag­netron sput­ter­ing de­tails of the prepa­ra­tion of 9 GHz, 7 GHz, and 3.9 GHz res­o­nant cav­i­ties and their qual­ity fac­tor mea­sure­ments at dif­fer­ent ap­plied mag­netic fields are pre­sented.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB014  
About • Received ※ 18 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 26 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WECAA01 Progress in European Thin Film Activities 607
 
  • C. Pira, O. Azzolini, R. Caforio, E. Chyhyrynets, D. Fonnesu, D. Ford, V.A. Garcia, G. Keppel, G. Marconato, A. Salmaso, F. Stivanello
    INFN/LNL, Legnaro (PD), Italy
  • C.Z. Antoine, Y. Kalboussi, Th. Proslier
    CEA-IRFU, Gif-sur-Yvette, France
  • C. Benjamin, O.B. Malyshev, N. Marks, B.S. Sian, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C. Benjamin, J.W. Bradley, G. Burt, O.B. Malyshev, N. Marks, D.J. Seal, B.S. Sian, S. Simon, D.A. Turner, R. Valizadeh
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S. Berry
    CEA-DRF-IRFU, France
  • R. Berton, D. Piccoli, F. Piccoli, G. Squizzato, F. Telatin
    Piccoli, Noale (VE), Italy
  • M. Bertucci, R. Paparella
    INFN/LASA, Segrate (MI), Italy
  • M. Bonesso, S. Candela, V. Candela, R. Dima, G. Favero, A. Pepato, P. Rebesan, M. Romanato
    INFN- Sez. di Padova, Padova, Italy
  • J.W. Bradley, S. Simon
    The University of Liverpool, Liverpool, United Kingdom
  • G. Burt, D.J. Seal, D.A. Turner
    Lancaster University, Lancaster, United Kingdom
  • O. Hryhorenko, D. Longuevergne
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • X. Jiang, T. Staedler, A.O. Zubtsovskii
    University Siegen, Siegen, Germany
  • S. Keckert, J. Knobloch, O. Kugeler
    HZB, Berlin, Germany
  • J. Knobloch
    University of Siegen, Siegen, Germany
  • N.L. Leicester
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • A. Medvids, A. Mychko, P. Onufrijevs
    Riga Technical University, Riga, Latvia
  • S. Prucnal, S. Zhou
    HZDR, Dresden, Germany
  • R. Ries
    Slovak Academy of Sciences, Institute of Electrical Engineering, Bratislava, Slovak Republic
  • E. Seiler
    IEE, Bratislava, Slovak Republic
  • L.G.P. Smith
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  Funding: This project has received funding from the European Union s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730.
Thin-film cav­i­ties with higher Tc su­per­con­duc­tors (SC) than Nb promise to move the op­er­at­ing tem­per­a­ture from 2 to 4.5 K with sav­ings 3 or­ders of mag­ni­tude in cryo­genic power con­sump­tion. Sev­eral Eu­ro­pean labs are co­or­di­nat­ing their ef­forts to ob­tain a first 1.3 GHz cav­ity pro­to­type through the I.​FAST col­lab­o­ra­tion and other in­for­mal col­lab­o­ra­tions with CERN and DESY. R&D cov­ers the en­tire pro­duc­tion chain. In par­tic­u­lar, new pro­duc­tion tech­niques of seam­less Cop­per and Nio­bium el­lip­ti­cal cav­i­ties via ad­di­tive man­u­fac­tur­ing are stud­ied and eval­u­ated. New acid-free pol­ish­ing tech­niques to re­duce sur­face rough­ness in a more sus­tain­able way such as plasma elec­trop­o­l­ish­ing and met­al­lo­graphic pol­ish­ing have been tested. Op­ti­miza­tion of coat­ing pa­ra­me­ters of higher Tc SC than Nb (Nb₃Sn, V₃Si, NbTiN) via PVD and mul­ti­layer via ALD are on the way. Fi­nally, rapid heat treat­ments such as Flash Lamp An­neal­ing and Laser An­neal­ing are used to avoid or re­duce Cu dif­fu­sion in the SC film. The de­vel­op­ment and char­ac­ter­i­za­tion of SC coat­ings is done on pla­nar sam­ples, 6 GHz cav­i­ties, choke cav­i­ties, QPR and 1.3 GHz cav­i­ties. This work pre­sents the progress sta­tus of these co­or­di­nated ef­forts.
 
slides icon Slides WECAA01 [15.846 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WECAA01  
About • Received ※ 18 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 02 September 2023 — Issue date ※ 02 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB118 Study and Improvements of Liquid Tin Diffusion Process to Synthesize Nb₃Sn Cylindrical Targets 868
SUSPB033   use link to see paper's listing under its alternate paper code  
 
  • D. Ford, E. Chyhyrynets, D. Fonnesu, G. Keppel, G. Marconato, C. Pira, A. Salmaso
    INFN/LNL, Legnaro (PD), Italy
 
  Funding: This project has received funding from the European Union¿s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730. Work supported by the INFN CSNV experiment SAMARA.
Nb₃Sn thin films on bulk Nb cav­i­ties ex­hibit com­pa­ra­ble per­for­mance to bulk Nb at lower tem­per­a­tures, and using Cu as a sub­strate ma­te­r­ial can fur­ther im­prove per­for­mance and re­duce costs. How­ever, coat­ing sub­strates with curved geome­tries like el­lip­ti­cal cav­i­ties can be chal­leng­ing due to the brit­tle­ness of Nb₃Sn tar­gets pro­duced by a clas­si­cal sin­ter­ing tech­nique. This work ex­plores the use of the Liq­uid Tin Dif­fu­sion (LTD) tech­nique to pro­duce sput­ter­ing tar­gets for 6 GHz el­lip­ti­cal cav­i­ties, which al­lows for the de­po­si­tion of thick and uni­form coat­ings on Nb sub­strate, even for com­plex geome­tries. The study in­cludes im­prove­ments in the LTD process and the pro­duc­tion of a sin­gle-use LTD tar­get, as well as the char­ac­ter­i­za­tion of Nb₃Sn films coated by DC mag­netron sput­ter­ing using these in­no­v­a­tive tar­gets.
 
poster icon Poster WEPWB118 [5.462 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB118  
About • Received ※ 17 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 01 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB119 Additive Manufacturing of Pure Niobium and Copper Using Laser Powder Bed Fusion for Particle Accelerator Applications 872
SUSPB034   use link to see paper's listing under its alternate paper code  
 
  • D. Ford, R. Caforio, E. Chyhyrynets, G. Keppel, C. Pira
    INFN/LNL, Legnaro (PD), Italy
  • M. Bonesso, S. Candela, V. Candela, R. Dima, G. Favero, A. Pepato, P. Rebesan, M. Romanato
    INFN- Sez. di Padova, Padova, Italy
  • M. Pozzi
    Rösler Italiana s.r.l., Concorezzo, Italy
 
  Funding: This project has received funding from the European Union¿s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730. Work supported by the INFN CSNV experiment SAMARA.
In this study, Metal Ad­di­tive Man­u­fac­tur­ing (MAM) was eval­u­ated as a vi­able method for pro­duc­ing seam­less 6 GHz pure cop­per and nio­bium pro­to­types with­out the use of in­ter­nal sup­ports. Pre­lim­i­nary tests were per­formed to eval­u­ate print­abil­ity, lead­ing to fur­ther in­ves­ti­ga­tions into sur­face treat­ments to re­duce sur­face rough­ness from 35 µm to less than 1 µm. Ad­di­tional pro­to­types were printed using dif­fer­ent pow­ders and ma­chines, ex­plor­ing var­i­ous print­ing pa­ra­me­ters and in­no­v­a­tive con­tact­less sup­port­ing struc­tures to im­prove the qual­ity of down­ward-fac­ing sur­faces with small in­cli­na­tion an­gles. These struc­tures en­abled the fab­ri­ca­tion of seam­less SRF cav­i­ties with a rel­a­tive den­sity greater than 99.8%. Qual­ity test­ing was con­ducted using tech­niques such as to­mog­ra­phy, leak test­ing, res­o­nant fre­quency as­sess­ment, and in­ter­nal in­spec­tion. The re­sults of this study are pre­sented herein.
 
poster icon Poster WEPWB119 [9.235 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB119  
About • Received ※ 18 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 18 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)