Author: Yakovlev, V.P.
Paper Title Page
TUPTB036 Equidistant Optimization of Elliptical SRF Standing Wave Cavities 480
 
  • V.D. Shemelin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  A record ac­cel­er­at­ing rate was achieved ear­lier in stand­ing wave (SW) SRF cav­i­ties when their shape was op­ti­mized for lower peak sur­face mag­netic field. In view of new ma­te­ri­als with higher lim­it­ing mag­netic fields, ex­pected for SRF cav­i­ties, in the first line Nb₃Sn, the ap­proach to op­ti­miza­tion of cav­ity shape should be re­vised. A method of equidis­tant op­ti­miza­tion, of­fered ear­lier for trav­el­ing wave cav­i­ties is ap­plied to SW cav­i­ties. It is shown here that with­out lim­i­ta­tion by mag­netic field, the max­i­mal ac­cel­er­at­ing rate is de­fined to a sig­nif­i­cant de­gree by the cav­ity shape. For ex­am­ple, for a cav­ity with the aper­ture ra­dius Ra = 35 mm the min­i­mal ratio of the peak sur­face elec­tric field to the ac­cel­er­at­ing rate is about Epk/Eacc = 1.54. So, with the max­i­mal sur­face field ex­per­i­men­tally achieved Epk ¿ 125 MV/m, the max­i­mal achiev­able ac­cel­er­at­ing rate is about 80 MeV/m even if there are no re­stric­tions by the mag­netic field. An­other op­por­tu­nity ¿ op­ti­miza­tion for a low mag­netic field, is open­ing for the same ma­te­r­ial, Nb₃Sn, with the pur­pose to have a high qual­ity fac­tor and in­creased ac­cel­er­at­ing rate that can be used for in­dus­trial linacs.  
poster icon Poster TUPTB036 [0.787 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB036  
About • Received ※ 15 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 08 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB043 Development of 3-Cell Traveling Wave SRF Cavity 517
 
  • F. Furuta, T.N. Khabiboulline, K.E. McGee, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • P.V. Avrakhov, R.A. Kostin
    Euclid TechLabs, Solon, Ohio, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
Trav­el­ing wave SRF cav­ity is a new tech­nol­ogy and re­quires a multi-stage process for de­vel­op­ment. Con­cep-tual de­signs have been pro­posed to adopt TW res­o­nance in an SRF cav­ity The early stages of de­vel­op­ments have been funded by sev­eral SBIR grants to Eu­clid Tech­labs which were com­pleted in col­lab­o­ra­tion with Fer­mi­lab. A 3-cell proof-of-prin­ci­ple TW cav­ity was fab­ri­cated as part of that and demon­strated the TW res­o­nance ex­cita-tion at room tem­per­a­ture. A TW res­o­nance con­trol tuner for the 3-cell was also fab­ri­cated and the pre­lim­i­nary tests were per­formed. Now, the 3-cell cav­ity is being processed and pre­pared for the first cryo­genic test­ing.
 
poster icon Poster TUPTB043 [1.743 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB043  
About • Received ※ 17 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 02 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB044 Compact Multicell Superconducting Crab Cavity for ILC 521
 
  • A. Lunin, S.A. Belomestnykh, I.V. Gonin, T.N. Khabiboulline, Y.M. Orlov, V. Poloubotko, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the Fermi National Accelerator Laboratory; managed by Fermi Research Alliance, LLC under Contract No. DEAC02-07CH11359 with the U.S. Department of Energy
We pro­pose a novel de­sign of a de­flect­ing cav­ity for the ILC pro­ject with low par­a­sitic HOM losses and pre­serv­ing the beam emit­tance, which is crit­i­cal for op­er­a­tion with high beam cur­rent in­ten­sity. Mul­ti­ple elec­trodes im­mersed in the hol­low wave­guide form a trapped-mode res­onator. The trans­verse com­po­nents of the elec­tro­mag­netic field of the trapped di­pole mode in­duce a trans­verse kick and ef­fi­ciently de­flect charged par­ti­cles pass­ing through the cav­ity. We pre­sent a scal­able de­sign of a su­per­con­duct­ing Quasi-wave­guide Mul­ti­cell Res­onator (QMiR) seam­lessly con­nected with a beam vac­uum cham­ber. The cav­ity is com­pletely open at both ends, which sig­nif­i­cantly re­duces the max­i­mum loaded qual­ity fac­tor of the higher order modes (HOM), avoids com­plex HOM cou­plers and thus sim­pli­fies the me­chan­i­cal de­sign of the cav­ity. The same port is used to feed RF power to the op­er­at­ing mode and to ex­tract the same order modes (SOM). Fi­nally, we es­ti­mate the ex­pected cryo­genic losses, HOM im­ped­ance lim­its, RF input power re­quired, and fre­quency tun­ing for a QMiR cav­ity de­signed to op­er­ate at 2.6 GHz.
 
poster icon Poster TUPTB044 [6.975 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB044  
About • Received ※ 19 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 16 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB075 Impact of Solenoid Induced Residual Magnetic Fields on the Prototype SSR1 CM Performance 760
 
  • D. Passarelli, J. Bernardini, C. Boffo, S.K. Chandrasekaran, A.H. Hogberg, T.N. Khabiboulline, J.P. Ozelis, M. Parise, V. Roger, G.V. Romanov, A.I. Sukhanov, G. Wu, Y. Xie, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
A pro­to­type cry­omod­ule con­tain­ing eight Sin­gle Spoke Res­onators type-1 (SSR1) op­er­at­ing at 325 MHz and four su­per­con­duct­ing fo­cus­ing lenses was suc­cess­fully as­sem­bled, cold tested, and ac­cel­er­ated beam in the frame­work of the PIP-II pro­ject at Fer­mi­lab. The im­pact of in­duced resid­ual mag­netic fields from the so­le­noids on per­for­mance of cav­i­ties is pre­sented in this con­tri­bu­tion. In ad­di­tion, de­sign op­ti­miza­tions for the pro­duc­tion cry­omod­ules as a re­sult of this im­pact are high­lighted.
 
poster icon Poster WEPWB075 [2.429 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB075  
About • Received ※ 26 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 11 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB109 PI Loop Resonance Control for the Dark Photon Experiment at 2 K using a 2.6 GHz SRF cavity 847
 
  • C. Contreras-Martinez, B. Giaccone, O.S. Melnychuk, A.V. Netepenko, Y.M. Pischalnikov, S. Posen, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Two 2.6 GHz cav­i­ties are being used for dark pho­ton search at VTS in FNAL. Dur­ing test­ing at 2 K the cav­i­ties ex­pe­ri­ence fre­quency de­tun­ing caused by mi­cro­phon­ics and slow fre­quency drifts. The ex­per­i­ment re­quires that the two cav­i­ties have the same fre­quency within 5 Hz. These two cav­i­ties are equipped with fre­quency tuners con­sist­ing of three piezo ac­tu­a­tors. The piezo ac­tu­a­tors are used for fine-fast fre­quency tun­ing. A PI loop uti­liz­ing the piezos was used to main­tain both cav­i­ties at the same fre­quency, and the re­sults are pre­sented.  
poster icon Poster WEPWB109 [1.151 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB109  
About • Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 18 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THIXA07
Compact, High-Power Superconducting Electron Linear Accelerators for Environmental and Industrial Applications: Projects and Status  
 
  • J.C.T. Thangaraj, R. Dhuley, C.J. Edwards, I.V. Gonin, S. Kazakov, T.N. Khabiboulline, T.K. Kroc, T.H. Nicol, W. Pellico, A. Saini, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  We have de­vel­oped and demon­strated a novel su­per­con­duct­ing ac­cel­er­a­tor tech­nol­ogy ¿ con­duc­tion cool­ing - that elim­i­nates the need for liq­uid He­lium, thus dra­mat­i­cally sim­pli­fy­ing the in­fra­struc­ture needed to ac­cess SRF tech­nol­ogy for in­dus­trial ap­pli­ca­tions. Our ma­chine com­bines R&D break­throughs in high-tem­per­a­ture SRF cav­i­ties (Nb₃Sn), cost-ef­fec­tive ra­dio-fre­quency sources, mod­ern tech­nol­ogy cryo-cool­ers, and high-av­er­age cur­rent elec­tron guns. We will de­scribe cur­rently ac­tive con­duc­tion-cooled ac­cel­er­a­tor pro­jects at 650 MHz and 1.3 GHz. We will also pre­sent the ex­per­i­men­tal re­sults on the con­duc­tion cool­ing of SRF cav­i­ties and briefly dis­cuss re­sults from other labs. Our com­pact linac is de­signed to gen­er­ate elec­tron beam en­er­gies up to 10 MeV in con­tin­u­ous-wave op­er­a­tion. Our de­tailed ther­mal, RF, and beam trans­port sim­u­la­tions show that a sin­gle ac­cel­er­a­tor mod­ule can de­liver av­er­age beam power as high as 250 kW. We can reach up to 1 MW by com­bin­ing sev­eral mod­ules. Com­pact and light enough to mount on mo­bile plat­forms, our ma­chine will en­able ap­pli­ca­tions such as treat­ing con­t­a­m­i­nants in water, in­no­v­a­tive pave­ment con­struc­tion, and X-ray med­ical de­vice ster­il­iza­tion.  
slides icon Slides THIXA07 [3.113 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRIBA04 Crab Cavities for ILC 990
 
  • P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S.A. Belomestnykh, I.V. Gonin, T.N. Khabiboulline, A. Lunin, Y.M. Orlov, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R. Calaga
    CERN, Meyrin, Switzerland
  • S.U. De Silva
    JLab, Newport News, Virginia, USA
  • J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • T. Okugi, A. Yamamoto
    KEK, Ibaraki, Japan
  • S. Verdú-Andrés, B.P. Xiao
    BNL, Upton, New York, USA
 
  For the 14 mrad cross­ing angle pro­posed, crab cav­ity sys­tems are fun­da­men­tally an­tic­i­pated for the vi­able op­er­a­tion of the In­ter­na­tional Lin­ear Col­lider (ILC), in order to max­imise its lu­mi­nos­ity per­for­mance. Since 2021, a spe­cial­ist de­vel­op­ment team have been defin­ing op­ti­mum crab cav­ity tech­nolo­gies which can ful­fil the op­er­a­tional re­quire­ments for ILC, both for its base­line cen­tre-of-mass en­ergy of 250 GeV, but also ex­tend­ing those re­quire­ments out to higher beam col­li­sion in­ten­si­ties. Five de­sign teams have es­tab­lished crab cav­ity tech­nol­ogy so­lu­tions, which have the ca­pa­bil­ity to also op­er­ate up to 1 TeV cen­tre-of-mass. This pre­sen­ta­tion show­cases the key per­for­mance ca­pa­bil­i­ties of these de­signs and their as­so­ci­ated ben­e­fits for both man­u­fac­ture and in­te­gra­tion into the ILC In­ter­ac­tion Re­gion. The rec­om­mended out­come of the re­cently con­ducted crab cav­ity tech­nol­ogy down-se­lec­tion, will also be high­lighted.  
slides icon Slides FRIBA04 [2.526 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-FRIBA04  
About • Received ※ 19 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 20 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)