Author: Chandrasekaran, S.K.
Paper Title Page
MOIXA02 PIP-II Project Overview and Status 19
 
  • R.P. Stanek, C. Boffo, S.K. Chandrasekaran, S.J. Dixon, E.R. Harms, L. Kokoska, I. Kourbanis, J.R. Leibfritz, O. Napoly, D. Passarelli, E. Pozdeyev, A.M. Rowe
    Fermilab, Batavia, Illinois, USA
 
  Funding: Prepared by PIP-II Project using resources of the Fermi National Accelerator Laboratory, a U.S. DOE facility, managed by Fermi Research Alliance, LLC, acting under Contract No. DE-AC02-07CH11359.
The Proton Improvement Plan II (PIP-II) project is an essential upgrade to Fermilab’s particle accelerator complex to enable the world’s most intense neutrino beam for LBNF/DUNE and a broad particle physics program for many decades to come. PIP-II will deliver 1.2 MW of proton beam power from the Main Injector, upgradeable to multi-MW capability. The central element of PIP-II is an 800 MeV superconducting radio frequency (SRF) linac, which comprises a room temperature front end followed by an SRF section. The SRF section consists of five different flavors of cavities/cryomodules, including Half Wave Resonators (HWR), Single Spoke and elliptical resonators operating at, or above, state-of-the-art parameters. The first two PIP-II cryomodules, Half Wave Resonator (HWR) and Single Spoke Resonator 1 (SSR1) were installed in the PIP-II Injector Test facility (PIP2IT) and have accelerated beam to above 17 MeV. PIP-II is the first U.S. accelerator project that will be constructed with significant contributions from international partners, including India, Italy, France, United Kingdom and Poland. The project was baselined in April 2022, and the construction phase is underway.
 
slides icon Slides MOIXA02 [3.353 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOIXA02  
About • Received ※ 07 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 16 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB030 Medium Temperature Furnace Baking of Low-beta 650 MHz Five-cell Cavities 158
 
  • G. Wu, S.K. Chandrasekaran, V. Chouhan, G.V. Eremeev, F. Furuta, K.E. McGee, A.A. Murthy, A.V. Netepenko, J.P. Ozelis, H. Park, S. Posen
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Medium Temperature baking of low beta 650 MHz cavities was conducted in a UHV furnace. A systematic study of cavity surface resistance components, residual and BCS, was conducted, including analyzing surface resistance due to trapped magnetic flux. Cavities showed an average 4.5 nano-ohm surface resistance at 17 MV/m under 2 K, which meets PIP-II specifications with a 40% margin. The results provided helpful information for the PIP-II project to optimize the cavity processing recipe for cryomodule application. The results were compared to the 1.3 GHz cavity that received a similar furnace baking.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB030  
About • Received ※ 19 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 18 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB042 Latest Development of Electropolishing Optimization for 650 MHz Cavity 512
 
  • V. Chouhan, D.J. Bice, D.A. Burk, S.K. Chandrasekaran, A.T. Cravatta, P.F. Dubiel, G.V. Eremeev, F. Furuta, O.S. Melnychuk, A.V. Netepenko, M.K. Ng, J.P. Ozelis, H. Park, T.J. Ring, G. Wu
    Fermilab, Batavia, Illinois, USA
  • B.M. Guilfoyle, M.P. Kelly, T. Reid
    ANL, Lemont, Illinois, USA
 
  Electropolishing (EP) of 1.3 GHz niobium (Nb) superconducting RF cavities is conducted to achieve a desired smooth and contaminant-free surface that yields good RF performance. Achieving a smooth surface of a large-sized elliptical cavity with the standard EP conditions was found to be challenging. This work aimed to conduct a systematic parametric EP study to understand the effects of various EP parameters on the surface of 650 MHz cavities used in PIP-II linac. Parameters optimized in this study provided a smooth surface of the cavities. The electropolished cavities met the baseline requirement of field gradient and qualified for further surface treatment to improve the cavity quality factor.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB042  
About • Received ※ 19 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 06 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB047 The Evaluation of Mechanical Properties of LB650 Cavities 536
 
  • G. Wu, S.D. Adams, D.J. Bice, S.K. Chandrasekaran, I.V. Gonin, C.J. Grimm, J.P. Holzbauer, T.N. Khabiboulline, C.S. Narug, J.P. Ozelis, H. Park, G.V. Romanov, R. Thiede, R. Treece, A.D. Wixson
    Fermilab, Batavia, Illinois, USA
  • K.E. McGee
    FRIB, East Lansing, Michigan, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The 650 MHz cavities have a stronger requirement of niobium mechanical properties because of the geometric shape of the cavity due to reduced beta. The mechanical property of the niobium half-cell was measured following various heat treatments. The 5-cell cavities were tested in a controlled drop test fashion and the real-world road test. The result showed that the 900C heat treatment was compatible with cavity handling and transportation during production. The test provides the bases of the transportation specification and shipping container design guidelines.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB047  
About • Received ※ 19 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 14 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB063 Final Design of the LB650 Cryomodule for the PIP-II Linear Accelerator 721
 
  • R. Cubizolles, S. Ladegaillerie, A. Moreau
    CEA-IRFU, Gif-sur-Yvette, France
  • N. Bazin, S. Berry, J. Drant, P. Garin, A. Raut, C. Simon
    CEA-DRF-IRFU, France
  • S.K. Chandrasekaran, O. Napoly, V. Roger
    Fermilab, Batavia, Illinois, USA
 
  The Proton Improvement Plan II (PIP-II) that will be installed at Fermilab is the first U.S. accelerator project that will have significant contributions from international partners. CEA joined the international collaboration in 2018, and its scope covers the supply of the 650 MHz low-beta cryomodule section, with the design of the cryostat (i.e the cryomodule without the cavities, the power couplers and the frequency tuning systems) and the manufacturing of its components, the assembly and tests of the pre-production cryomodule and 9 production modules. An important milestone was reached in April 2023 with the Final Design Review. This paper presents the detailed design of the 650 MHz low-beta cryomodules.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB063  
About • Received ※ 21 June 2023 — Revised ※ 28 June 2023 — Accepted ※ 04 July 2023 — Issue date ※ 20 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB067 HB650 Cryomodule Design: From Prototype to Production 741
 
  • V. Roger, S.K. Chandrasekaran, C.J. Grimm, J.P. Holzbauer, O. Napoly, J.P. Ozelis, D. Passarelli
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
In early 2023 the assembly of the prototype HB650 cryomodule (pHB650 CM) was completed and cold tests started to evaluate its performance. The lessons learned from the design, assembly and preliminary cold tests of this cryomodule, and from the design of the SSR2 pre-production cryomodule played a fundamental role during the design optimization process of the production HB650 cryomodule (HB650 CM). Several workshops have been organized to share experiences and solve problems. This paper presents the main design changes from pHB650 to the HB650 production cryomodules and their impact on the heat loads.
 
poster icon Poster WEPWB067 [2.178 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB067  
About • Received ※ 18 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 01 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB070 Test Shipment of the PIP-II 650 MHz Transport Frame Between FNAL to STFC-UKRI 750
 
  • J.P. Holzbauer, S.K. Chandrasekaran, C.J. Grimm, J.P. Ozelis, R. Thiede, A.D. Wixson
    Fermilab, Batavia, Illinois, USA
  • M.T.W. Kane
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Work supported by Fermi Research Alliance, LLC under Contract No. DEAC02- 07CH11359 with the United States Department of Energy
The PIP-II Project will receive fully assembled cryomodules from CEA and STFC-UKRI as in-kind contributions. Damage to these cryomodules during transport is understood to be a significant risk to the project, so an extensive testing and validation program is in process to mitigate this risk. The centerpiece of this effort is the eventual shipment from FNAL to STFC-UKRI and back of a prototype HB650 cryomodule with cold testing before and after shipment to verify no functionality changes from shipment. Most recently, a test shipment to the UK and back using a cryomodule analog was completed using realistic logistics, handling, instrumentation, and planning. The process of executing this test shipment, lessons learned, and plan moving forward will be presented here.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB070  
About • Received ※ 18 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 17 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB075 Impact of Solenoid Induced Residual Magnetic Fields on the Prototype SSR1 CM Performance 760
 
  • D. Passarelli, J. Bernardini, C. Boffo, S.K. Chandrasekaran, A.H. Hogberg, T.N. Khabiboulline, J.P. Ozelis, M. Parise, V. Roger, G.V. Romanov, A.I. Sukhanov, G. Wu, Y. Xie, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
A prototype cryomodule containing eight Single Spoke Resonators type-1 (SSR1) operating at 325 MHz and four superconducting focusing lenses was successfully assembled, cold tested, and accelerated beam in the framework of the PIP-II project at Fermilab. The impact of induced residual magnetic fields from the solenoids on performance of cavities is presented in this contribution. In addition, design optimizations for the production cryomodules as a result of this impact are highlighted.
 
poster icon Poster WEPWB075 [2.429 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB075  
About • Received ※ 26 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 11 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB093 Transportation Fatigue Testing of the pHB650 Power Coupler Antenna for the PIP-II Project at Fermilab 801
 
  • J. Helsper, S.K. Chandrasekaran, J.P. Holzbauer, N. Solyak
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The PIP-II Project will see international shipment of cryomodules from Europe to the United States, and as such, the shocks which can occur during shipment pose a risk to the internal components. Of particular concern is the coupler ceramic window and surrounding brazes, which can see relatively high stress during an excitation event. Since the antenna design is new, and because of the setback failure would create, a cyclic stress test was devised for the antenna. This paper presents the experimental methods, setup, and results of the test.
 
poster icon Poster WEPWB093 [2.913 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB093  
About • Received ※ 19 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 03 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB096 Testing of PIP-II Pre-production 650 MHz Couplers in Warm Test Stand and Cryomodule 812
 
  • N. Solyak, S.K. Chandrasekaran, B.M. Hanna, J. Helsper, J.P. Holzbauer, S. Kazakov, A.I. Sukhanov
    Fermilab, Batavia, Illinois, USA
 
  650 MHz fundamental power couplers were developed for PIP-II project to deliver RF power for low-beta and high-beta elliptical cavities. Few prototypes were built and tested and after some modification we built 8 pre-production couplers (with three spares for vacuum side) for ppHB650 cryomodule. All couplers were successfully tested in pulse mode (up to 100kW) and in CW mode (up to 50kW) in test stand at full reflection at 8 phases. In baseline configuration with DC bias we do not see any multipactoring activity after short processing. We also tested power processing without bias for uncoated and TiN coated ceramic window. Results of these studies presented in this paper. One of the coupler was assembled on LB650 cavity and tested at cryogenic environment in STC cryostat at ~30kW power with full reflection at different reflection phase. We also demonstrated good result from power processing without bias for warm and cold cavity. Six couplers were assembled on HB650 cavities in pre-production cryomodule. Test results from cryomodule qualification is discussing in this paper.  
poster icon Poster WEPWB096 [2.748 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB096  
About • Received ※ 19 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 17 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)