Author: Xu, T.
Paper Title Page
MOIAA01 FRIB Transition to User Operations, Power Ramp Up, and Upgrade Perspectives 1
 
  • J. Wei, H. Ao, B. Arend, S. Beher, G. Bollen, N.K. Bultman, F. Casagrande, W. Chang, Y. Choi, S. Cogan, C. Compton, M. Cortesi, J.C. Curtin, K.D. Davidson, X.J. Du, K. Elliott, B. Ewert, A. Facco, A. Fila, K. Fukushima, V. Ganni, A. Ganshyn, T.N. Ginter, T. Glasmacher, J.-W. Guo, Y. Hao, W. Hartung, N.M. Hasan, M. Hausmann, K. Holland, H.-C. Hseuh, M. Ikegami, D.D. Jager, S. Jones, N. Joseph, T. Kanemura, S.H. Kim, C. Knowles, T. Konomi, B.R. Kortum, E. Kwan, T. Lange, M. Larmann, T.L. Larter, K. Laturkar, R.E. Laxdal, J. LeTourneau, Z. Li, S.M. Lidia, G. Machicoane, C. Magsig, P.E. Manwiller, F. Marti, T. Maruta, E.S. Metzgar, S.J. Miller, Y. Momozaki, D.G. Morris, M. Mugerian, I.N. Nesterenko, C. Nguyen, P.N. Ostroumov, M.S. Patil, A.S. Plastun, L. Popielarski, M. Portillo, J. Priller, X. Rao, M.A. Reaume, K. Saito, B.M. Sherrill, M.K. Smith, J. Song, M. Steiner, A. Stolz, O. Tarasov, B.P. Tousignant, R. Walker, X. Wang, J.D. Wenstrom, G. West, K. Witgen, M. Wright, T. Xu, Y. Yamazaki, T. Zhang, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • K. Hosoyama
    KEK, Ibaraki, Japan
  • P. Hurh
    Fermilab, Batavia, Illinois, USA
  • M.P. Kelly, Y. Momozaki
    ANL, Lemont, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
  • S.O. Prestemon
    LBNL, Berkeley, California, USA
  • M. Wiseman
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
After project completion on scope, on cost, and ahead of schedule, the Facility for Rare Isotope Beams began operations for scientific users in May of 2022. During the first 12 months of user operations, the FRIB accelerator complex delivered 5250 beam hours, including 1528 hours to nine science experiments conducted with primary beams of 36Ar, 48Ca, 70Zn, 82Se, 124Xe, and 198Pt at beam energies >200 MeV/u; 2724 hours for beam developments, studies, and tuning; and 998 hours to industrial users and non-scientific programs using the FRIB Single Event Effect (FSEE) beam line. The ramp-up to a beam power of 400 kW is planned over a six-year period; 1 kW was delivered for initial user runs from in 2022, and 5 kW was delivered as of February 2023. Upgrade plans include doubling the primary-beam energy to 400 MeV/nucleon for enhanced discovery potential (¿FRIB 400¿). This talk reports on FRIB status and progress since SRF2021, emphasizing lessons learned during the transition from beam commissioning to machine operations, challenges and resolutions for the power ramp-up, progress with accelerator improvements, and R&D for the energy upgrade.
 
slides icon Slides MOIAA01 [7.037 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOIAA01  
About • Received ※ 20 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 03 July 2023 — Issue date ※ 19 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB026 Development of Transformative Cavity Processing - Superiority of Electropolishing on High Gradient Performance over Buffered Chemical Polishing at Low Frequency (322 MHz) 145
 
  • K. Saito, C. Compton, K. Elliott, W. Hartung, S.H. Kim, T.K. Konomi, E.S. Metzgar, S.J. Miller, L. Popielarski, A.T. Taylor, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: The work is supported by DOE Awards DE-SC0022994.
A DOE grant R&D titled ¿Development of Transformative Preparation Technology to Push up High Q/G Performance of FRIB Spare HWR Cryomodule Cavities¿ is ongoing at FRIB. This R&D is for 2 years since September 2022. This project proposes four objectives: 1) Superiority on high gradient performance of electropolishing (EP) over buffered chemical polishing at low frequency (322 MHz), 2) High Qo performance by the local magnetic shield, 3) Development of HFQS-free BCP and, 4) Wet N-doping method. This paper will report the result of first object, and a local magnetic shield design and simulation to reduce the residual magnetic field < 0.1 mG in the vertical test Dewar, for the object 2.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB026  
About • Received ※ 14 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 08 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB067 Design of a Cathode Insertion and Transfer System for LCLS-II-HE SRF Gun 267
 
  • R. Xiang, A. Arnold, S. Gatzmaga, A. Hoffmann, P. Murcek, R. Steinbrück, J. Teichert
    HZDR, Dresden, Germany
  • C. Adolphsen, J. Smedley
    SLAC, Menlo Park, California, USA
  • W. Hartung, S.H. Kim, T.K. Konomi, S.J. Miller, L. Popielarski, K. Saito, T. Xu
    FRIB, East Lansing, Michigan, USA
  • M.P. Kelly, T.B. Petersen
    ANL, Lemont, Illinois, USA
  • J.W. Lewellen
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by cooperation project between MSU and HZDR RC113062 from the U.S. Department of Energy Office of Science under Cooperative Agreement DE-AC02-76SF00515.
Superconducting radio frequency photo injectors (SRF gun) offer advantages for operating in continuous wave (CW) mode and generating high-brightness and high-current beams. A new SRF gun is designed as a low emittance photo injector for LCLS-II-HE and a prototype gun is currently being developed under collaboration between SLAC, FRIB, HZDR and ANL. The aim is to demonstrate stable CW operation at a cathode gradient of 30 MV/m. One of the crucial component for successful SRF gun operation is the photocathode system. The new SRF gun will adopt the HZDR-type cathode, which includes a cathode holder fixture (cathode stalk) developed by FRIB and a sophisticated cathode exchange system designed by HZDR. This innovative cathode insertion system ensures accurate, particle-free and warm cathode exchanges. A novel alignment process targets the cathode to the stalk axis without touching cathode plug itself. To commission the prototype gun, metallic cathodes will be used. A specifically designed vacuum system ensures vacuum pressure of 10-9 mbar for transport of a single cathode from the cleanroom to the gun. Thus maintaining cathode quality.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB067  
About • Received ※ 18 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 18 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB016 Summary of the FRIB Electropolishing Facility Design and Commissioning, Cavity Processing, and Cavity Test Results 419
 
  • E.S. Metzgar, B.W. Barker, K. Elliott, J.D. Hulbert, C. Knowles, L. Nguyen, A.R. Nunham, L. Popielarski, A.T. Taylor, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the FRIB, which is a DOE Office of Science User Facility, under Award Number DE-SC0000661.
Recently, a new Electropolishing (EP) facility was con-structed and commissioned at the Facility for Rare Isotope Beam (FRIB) with the purpose of supporting advanced surface processing techniques for SRF R&D activities. The FRIB production cavities opted for a Buffered Chemical Polish (BCP) method due to its cost effectiveness and was supported by successful outcomes in other facilities with low beta cavities in a similar frequency range. All 324 cavities used in FRIB Linac were processed in-house at MSU using BCP and exhibited satisfactory performance during testing. As part of the FRIB energy upgrade R&D, 5-cell 644 MHz elliptical resonators will be employed, desiring the use of EP and advanced techniques such as nitrogen doping and medium-T baking. The EP facility is designed to accommodate all types of cavities used in FRIB and possesses the capability for performing EP at low temperatures. Here we report the details of design and commissioning of the EP facility, highlights of encountered issues and subsequent improvements, and preliminary results from vertical tests conducted on the cavities.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB016  
About • Received ※ 15 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 14 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB039 Simulation of High Pressure Rinse in Superconducting Radio Frequency Cavities 496
 
  • B.E. Gower, K. Elliott, E.S. Metzgar, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: U.S. Department of Energy, Office of Science, Office of Nuclear Physics. Resources of the Facility for Rare Isotope Beams, a DOE Office of Science User Facility, under Award Number DE-SC0000661.
The finish of radio frequency (RF) surfaces inside superconducting RF (SRF) cavities is of utmost importance as it dictates ultimate cavity performance. After the cavity surfaces have undergone chemical etching, polishing, and hydrogen degassing, the final step in surface preparation involves cleaning using a high pressure rinse (HPR) with ultra-high purity water (UPW) to remove any residue from the previous chemical processes. The complex surface geometry of cavities poses difficulties in achieving effective and thorough HPR cleaning. This study introduces a versatile simulation tool created in MATLAB, which has the potential to be applied to various SRF cavities. The detail of the algorithm used and nozzle and motion setup will be described using an FRIB 0.53 half wave resonator (HWR) cavity as an example.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB039  
About • Received ※ 18 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 07 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB040 Mechanical Design and Analysis of SRF Gun Cavity Using ASME BPVC Section Viii, Division-2, Design by Analysis Requirement 501
 
  • M.S. Patil, C. Compton, S.H. Kim, S.J. Miller, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the Department of Energy Contract DE-AC02- 76SF00515
A prototype SRF gun is currently being designed at FRIB, MSU for the Low Emittance Injector of the Linac Coherent Light Source high energy upgrade at SLAC. This employs a 185.7 MHz superconducting quarter-wave resonator (QWR). The mechanical design of this cavity has been optimized for performance and to comply with ASME Section VIII, Div 2, Design by analysis requirements. This paper presents the various design by analysis procedures and how they have been adopted for the SRF gun cavity design.
 
poster icon Poster TUPTB040 [1.235 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB040  
About • Received ※ 15 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 18 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB069 Design and Tests of a Cathode Stalk for the LCLS-II-HE Low Emittance Injector SRF Gun 589
 
  • T.K. Konomi, W. Hartung, S.H. Kim, S.J. Miller, D.G. Morris, K. Saito, A.T. Taylor, T. Xu, Z.Y. Yin
    FRIB, East Lansing, Michigan, USA
  • C. Adolphsen, J. Smedley, L. Xiao
    SLAC, Menlo Park, California, USA
  • S. Gatzmaga, P. Murcek, R. Xiang
    HZDR, Dresden, Germany
  • M.P. Kelly, T.B. Petersen
    ANL, Lemont, Illinois, USA
  • J.W. Lewellen
    LANL, Los Alamos, New Mexico, USA
 
  A SRF gun can operate CW with a high gradient and ultra-low vacuum for high-quantum efficiency, low MTE photocathodes, useful features for delivery of high-brightness, high-repetition-rate beams. For these reasons, an SRF gun based photoinjector was chosen for a proposed Low Emittance Injector addition to the LCLS-II-HE facility, which will operate CW with bunch rates up to 1 MHz. For this injector, a prototype 185.7 MHz QWR gun is being developed in a collaborative effort among FRIB, HZDR, ANL and SLAC, with the goal of achieving a photocathode gradient of at least 30 MV/m. The photocathode is held by a coaxial fixture (cathode stalk) for thermal isolation from the cavity body. The system must allow for precise alignment of the photocathode, particle-free photocathode exchange, cryogenic (55-70 K) or warm (273-300 K) photocathode operating temperatures, and DC biasing to inhibit multipacting. A prototype cathode stalk has been built and bench tests are underway to validate the design. Measurements include RF power dissipation, DC bias hold-off, multipacting suppression and heat transfer effectiveness. This paper describes the cathode stalk design and the test results.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB069  
About • Received ※ 03 July 2023 — Revised ※ 27 July 2023 — Accepted ※ 19 August 2023 — Issue date ※ 20 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB113 Evaluation of Photo-Cathode Port Multipacting in the SRF Photo-Injector Cryomodule for the LCLS-II High-Energy Upgrade 859
SUSPB032   use link to see paper's listing under its alternate paper code  
 
  • Z.Y. Yin, W. Hartung, S.H. Kim, T. Konomi, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  The high-energy upgrade of the Linac Coherent Light Source (LCLS-II-HE) will increase the photon energy and brightness. A low-emittance injector (LEI) was proposed to increase the photon flux for high X-ray energies. FRIB, HZDR, Argonne, and SLAC are developing a 185.7 MHz superconducting radio-frequency photo-injector (SRF-PI) cryomodule for the LEI. The photo-cathode system requirements are challenging, as cathodes must be maintained at the desired temperature, precisely aligned, and operated without multipacting (MP); to avoid field emission, cathode exchange must be particulate-free. A support stalk has been designed to hold the cathode in position under these requirements. A DC bias is used to inhibit MP. We simulated MP for various surface conditions and bias levels. An RF/DC test was developed to evaluate the cathode stalk performance as a subsystem and to identify and correct issues before assembly into the full cryomodule. The RF/DC test makes use of a resonant coaxial line to generate an RF magnetic field similar to that of the cathode-in-SRF-PI-cavity case. High-power test results will be presented and compared to the MP simulations.
* Work supported by the Department of Energy Contract DE-AC02-76SF00515
 
poster icon Poster WEPWB113 [1.410 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB113  
About • Received ※ 20 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 26 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB127 Investigation of Coupler Breakdown Thresholds for Plasma Processing of FRIB Quarter-Wave Resonators with Fundamental and Higher-Order Modes 893
SUSPB035   use link to see paper's listing under its alternate paper code  
 
  • P.R. Tutt, W. Hartung, S.H. Kim, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB) under Award Number DE-SC0000661.
FRIB is developing plasma processing techniques for in-situ recovery of cavity performance in linac cryomodules during long-term user operation. While plasma processing has been shown to be effective for high-frequency (0.8 - 1.5 GHz) elliptical cavities, one of the challenges for FRIB is to avoid plasma breakdown in the fundamental input coupler (FPC), which has relatively weak coupling strength (Qext ranging from 2E6 to 1E7). FRIB cavities are not equipped with higher-order-mode (HOM) couplers; however, in preliminary tests, we found that HOMs are suitable for plasma processing of FRIB Quarter-Wave Resonators (QWRs) driven via the FPC. In this study, we investigated plasma breakdown thresholds in the fundamental and the first 2 HOMs for the FRIB β = 0.085 QWRs. Electric field distributions in the FPC region and cavity region were calculated for the room-temperature case using CST Microwave Studio’s frequency domain solver (FDS). Simulation results will be presented, with comparison of breakdown thresholds inferred from the RF modeling to the experimental results.
 
poster icon Poster WEPWB127 [5.068 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB127  
About • Received ※ 19 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 11 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB128 Experimental Study of Mechanical Dampers for the FRIB β=0.041 Quarter-Wave Resonators 898
SUSPB036   use link to see paper's listing under its alternate paper code  
 
  • J. Brown, W. Chang, W. Hartung, S.H. Kim, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the US Department of Energy, Office of Science, High Energy Physics under Cooperative Agreement award numbers DE-SC0018362 and DE-SC0000661 and Michigan State University.
The ’pendulum’ mechanical mode of quarter-wave resonators (QWR) often causes an issue with microphonics and/or ponderomotive instability unless otherwise the inner conductors are properly stiffened and/or damped. FRIB QWRs are equipped with a Legnaro-style frictional damper installed inside of the inner conductor such that it counteracts the oscillations of the inner conductor. In cryomodule tests and linac operation, we observed that the damping efficiency is different for a few β=0.041 QWRs. This study aimed to experimentally characterize the damping efficacy as a function of damper mass and surface roughness. We present damping measurements at room temperature and at two different masses and surface roughness as well as discuss future studies for damper re-optimization based on this follow-on study.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB128  
About • Received ※ 20 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 04 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THIXA01 Investigation of Plasma Processing for Coaxial Resonators 960
 
  • W. Hartung, W. Chang, K. Elliott, S.H. Kim, T. Konomi, K. Saito, P.R. Tutt, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  Plasma processing has been investigated by several facilities as a method to mitigate degradation of SRF cavity performance. It provides an alternative to removal and disassembly of cryomodules for refurbishment of each cavity via repeat etching and rinsing. Promising results have been obtained by several groups. Studies of plasma processing for quarter-wave resonators (QWRs) and half-wave resonators (HWRs) were undertaken at FRIB, where a total of 324 such resonators are presently in operation. Plasma ignition and optimization measurements were done with room-temperature-matched input couplers. Plasma cleaning tests were done on several QWRs using the fundamental power coupler (FPC) to drive the plasma. We investigated the usefulness of higher-order modes (HOMs) to drive the plasma. HOMs allow for less mismatch at the FPC and hence lower field in the coupler relative to the cavity. Before-and-after cold tests showed a significant reduction in field emission X-rays with judicious application of plasma processing.  
slides icon Slides THIXA01 [2.060 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-THIXA01  
About • Received ※ 01 September 2023 — Accepted ※ 02 September 2023 — Issue date ※ 02 September 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRIBA01
SRF R&D for FRIB Linac Energy Upgrade with High-performance Medium-beta Elliptical Cavity CW Cryomodules  
 
  • S.H. Kim, W. Chang, K. Elliott, W. Hartung, K.E. McGee, E.S. Metzgar, P.N. Ostroumov, L. Popielarski, J. Rathke, T. Xu, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • D.J. Bice, C. Contreras-Martinez, G.V. Eremeev, Y.M. Pischalnikov
    Fermilab, Batavia, Illinois, USA
  • B.M. Guilfoyle, M.P. Kelly, T. Reid
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy under Award Number DE-SC0000661. Further support provided by the US Department of Energy under Cooperative Agreement award number DE-SC0018362.
Michigan State University is pursuing SRF R&D for FRIB400 upgrade, doubling the FRIB linac beam energy (400 MeV/u for the heaviest uranium beam) using ßopt=0.65 644 MHz 5-cell elliptical cavities. We have achieved unprecedented Q₀ in this cavity class, Q₀ = 3.5·1010 at Eacc of 17.5 MV/m in a nitrogen-doped bare niobium cavity in collaboration with FNAL and ANL. The next missions are achieving such high Q₀ in jacketed cavities and in cryomodules, achieving field-emission free performance at Epeak of 40 MV/m with reproducibility, developing a compact two-window high-power fundamental power coupler (15 kW CW), and achieving stable resonance control of cavities integrated with tuners in cryomodules. In this talk, we will present progress of the SRF R&D and discuss future plan.
 
slides icon Slides FRIBA01 [2.513 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRIBA07 Status of the SLAC/MSU SRF Gun Development Project 1003
 
  • S.J. Miller, Y. Al-Mahmoud, W. Chang, Y. Choi, C. Compton, X.J. Du, K. Elliott, W. Hartung, J.D. Hulbert, S.H. Kim, T. Konomi, D.G. Morris, M.S. Patil, L. Popielarski, K. Saito, A. Taylor, B.P. Tousignant, J. Wei, J.D. Wenstrom, K. Witgen, T. Xu
    FRIB, East Lansing, Michigan, USA
  • C. Adolphsen, R. Coy, F. Ji, M.J. Murphy, J. Smedley, L. Xiao
    SLAC, Menlo Park, California, USA
  • A. Arnold, S. Gatzmaga, P. Murcek, J. Teichert, R. Xiang
    HZDR, Dresden, Germany
  • M.P. Kelly, T.B. Petersen, P. Piot
    ANL, Lemont, Illinois, USA
  • J.W. Lewellen
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the Department of Energy under Contract DE-AC02-76SF00515
The Linac Coherent Light Source II High Energy (LCLS-II-HE) Project at SLAC includes the construction of a low-emittance injector (LEI) and a superconducting quarter-wave resonator (QWR) at 185.7 MHz. Several alternatives to a superconducting radio frequency (SRF) QWR gun were considered for the LEI, including nor-mal-conducting RF guns evolved from the LCLS-II gun design. Compared to normal-conducting designs, the combination of an intrinsically outstanding vacuum environment (for cathode lifetime), and the potential for a larger ultimate performance envelope, led to the deci-sion to pursue development of the QWR-SRF gun. A prototype gun is currently being designed and fabricated at the Facility for Rare Isotope Beams (FRIB) at Michi-gan State University (MSU). This paper presents perfor-mance goals for the new gun design, an overview of the prototype development effort, status, and future plans including fabrication.
 
slides icon Slides FRIBA07 [9.655 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-FRIBA07  
About • Received ※ 15 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 11 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)